Appendix A LITERATURE REVIEW

Consulting • Technologies • Monitoring • Toxicology

Report

Road tunnels: reductions in nitrogen dioxide concentrations in cabin using vehicle ventilation systems

Literature review

NSW ROADS AND MARITIME SERVICES

Job ID. 20336

31 July 2015

www.pacific-environment.com

Brisbane

Perth

	Limited
PROJECT NAME:	Road tunnels: reductions in nitrogen dioxide concentrations in cabin using vehicle ventilation systems
DELIVERABLE:	Study methodology
JOB ID:	20336
DOCUMENT CONTROL NUMBER	AQU-NW-002-20336
PREPARED FOR:	NSW Roads and Maritime Services
APPROVED FOR RELEASE BY:	Damon Roddis
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at www.pacific-environment.com © Pacific Environment Operations Pty Ltd ABN 86 127 101 642

DOCUMENT CONTROL					
VERSION	DATE	COMMENT	PREPARED BY	REVIEWED BY	
1	31.07.2015	Draft	Paul Boulter Justine Firth Liza McDonough Luke Knibbs Ashley Martin Michael Patterson	Damon Roddis	

Pacific Environment Operations Pty Ltd: ABN 86 127 101 642

BRISBANE

Level 1, 59 Melbourne Street, South Brisbane Qld 4101 PO Box 3306, South Brisbane Qld 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Unit 1, 22 Varley Street Yeerongpilly, Qld 4105 Ph: +61 7 3004 6460

ADELAIDE

35 Edward Street, Norwood SA 5067 PO Box 3187, Norwood SA 5067 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

SYDNEY

Suite 1, Level 1, 146 Arthur Street North Sydney, NSW 2060 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

Pacific Environment

MELBOURNE

Level 10, 224 Queen Street Melbourne Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

PERTH

Level 1, Suite 3 34 Queen Street, Perth WA 6000 Ph: +61 8 9481 4961 Fax: +61 2 9870 0999

DISCLAIMER

Pacific Environment acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Pacific Environment. Pacific Environment is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Pacific Environment does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Pacific Environment for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Pacific Environment.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Pacific Environment is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

CONTENTS

1 INTRODUCTION	1
1.1 Background to the study	1
1.2 Objectives	2
1.3 Purpose of literature review and gap analysis	2
2 LITERATURE REVIEW	4
2.1 Background	4
1.1.1 Air exchange rate	4
1.1.2 I/O ratios	5
2.2 Influencing factors	5
2.2.1 Vehicle age/model year	5
1.1.3 Vehicle manufacturer	Error! Bookmark not defined.
2.2.2 Vehicle speed	6
2.2.3 Vehicle ventilation settings	6
2.3 In-tunnel studies	6
2.4 Modelling AERs and I/O pollutant ratios	7
2.4.1 Vehicle AER models	7
2.4.2 Vehicle I/O models	8
2.5 Summary and implications for study	10
3 MEASUREMENT METHODS	10
3.1 Air exchange rates	10
3.1.1 Measurement approaches	10
3.1.2 Applications to in-vehicle AER	11
3.1.3 Summary	12
3.2 Carbon dioxide	12
3.2.1 Cavity rina-down spectroscopy	12
3.2.2 Electrochemical cells	13
323 Non-dispersive infrared spectroscopy	13
324 Infrared	14
325 Gas sensitive semi-conductor	14
3.2.6 MidlR Absorption Spectroscopy	14
3.2.7 Summon	14
2.2. Nitrogon dioxido	14
	18
2.2.2. Pastable mariter	10
3.3.2 Portable monitors	18
3.3.3 Chemiluminescence analyser	18
3.3.4 Cavity Enhanced Laser Absorption Spectrosci	ору 18
3.3.5 MidlR Absorption Spectroscopy	19
3.3.6 Selected Ion Flow Tube Mass Spectrometry (SI	FT-MS) 19
3.3.7 Aerodyne Cavity Attenuated Phase Shift (CA	PS) 19
3.3.8 Summary	20
4 CHARACTERISATION OF SYDNEY TUNNELS	25
5 CHARACTERISATION OF SYDNEY CAR FLEET	26
5.5 Overview	26
5.5.1 Fuel type and vehicle type	26
5.5.2 Vehicle age	26
5.5.3 Vehicle size	A-28
5.5.4 Vehicle manufacturer	A-28
6 GAP ANALYSIS	26
7 REFERENCES	A-30

1 INTRODUCTION

Pacific Environment has been commissioned by NSW Roads and Maritime Services (RMS) to undertake a study entitled *Road tunnels: Reductions in nitrogen dioxide* (NO₂) concentrations in-cabin using vehicle ventilation systems. The study will involve detailed measurements of NO₂ concentrations inside cars that are being driven through road tunnels in Sydney, as well as the development and validation of in-vehicle pollution models. The outcomes of the study will be used to inform the design and operation of future road tunnels in Australia.

1.1.1 Background to the study

A number of major road infrastructure developments are currently planned for Sydney, and tunnels feature prominently amongst these - notably in the NorthConnex and WestConnex projects. If it is approved, WestConnex will form the longest road tunnel network in Australia. As air quality has historically been a factor that influences the acceptance of road tunnels by the Sydney community, research in this area is required. The concerns of the community have tended to focus on ambient air quality and the effects of tunnel ventilation stacks. However, given the length of the planned tunnels for NorthConnex and WestConnex, and the likely volumes of traffic in the tunnels, the potential exposure of vehicle occupants to elevated in-tunnel pollutant concentrations is subject to an increasing level of scrutiny.

In many tunnels the demand for fresh air (*i.e.* ventilation sizing) to reduce in-tunnel pollutant concentrations is calculated according to guidelines from the World Road Association (PIARC). The fresh air requirements for tunnel ventilation design and control have traditionally been based upon the in-tunnel concentration of carbon monoxide (CO). In the past, most of the CO was emitted by petrol-engined vehicles. However, following the introduction and refinement of engine management and exhaust after-treatment systems, CO emissions from petrol vehicles are now very low. The increased market penetration of diesel vehicles in passenger car fleets (more so in Europe than in Australia to date) has meant that some countries are now considering the use of nitrogen dioxide (NO₂) concentrations for tunnel ventilation sizing. This shift is further supported by evidence (again, mainly from the UK) of the increase in primary NO₂ emissions from road vehicles.

For the planned tunnels in Sydney it is likely that ventilation sizing will be dictated by in-tunnel NO₂ concentrations rather than ambient air quality considerations, and the use of correct assumptions for in-tunnel exposure will therefore be vital. However, there is little evidence in the literature relating to the success or otherwise of in-tunnel NO₂ limits, other than general comments to the effect that the management of NO₂ will require the development of reliable monitoring methods and models for in-tunnel concentrations. The exposure of vehicle occupants to NO₂ in tunnels, and the implications of this for tunnel ventilation design, have not been studied in detail. Whilst this is considered in some overseas guidance, such as the the UK Design Manual for Roads and Bridges (Highways Agency et al., 1999), it is not explicitly addressed by PIARC or other Australian guidance.

In response to ongoing concerns about tunnel-related air quality, the NSW Government has established an Advisory Committee on Tunnel Air Quality. The Committee is chaired by the NSW Chief Scientist & Engineer, and includes representatives from several government departments, including RMS. In its *Initial Report on Tunnel Air Quality*^a, the Committee advised that work be undertaken to:

'...research, develop and make recommendations on in-tunnel NO $_2$ limits that would provide an appropriate level of protection in the medium to long term.'

a http://www.chiefscientist.nsw.gov.au/reports

The Committee has set up a Working Group to collate information on the air exchange rate (AER) of passenger vehicles and the effectiveness of vehicle ventilation systems in reducing occupant exposure to NO_2 in road tunnels in Sydney.

Pacific Environment

This study has been established by RMS to obtain primary data on exposure to NO₂. The exposure of vehicle occupants to NO₂ in tunnels will be strongly dependent upon the capacity of the vehicle's ventilation system to minimise the AER. The study therefore deals with both AERs and in-vehicle NO₂.

1.1.2 Objectives

The objectives of the study are as follows:

- 1. To quantify the AERs and in-vehicle NO₂ concentrations for passenger vehicles (cars only) being driven through road tunnels in Sydney. The vehicles will reflect the types and ages of the current and future passenger vehicle fleet.
- 2. To compare NO₂ concentrations inside vehicles with those outside vehicles in the tunnel air, and subsequently determine inside-to-outside (I/O) ratios for NO₂.
- 3. To understand the influence of vehicle ventilation settings and other parameters on in-vehicle NO₂ concentrations.
- 4. To combine the results from a measurement campaign in Sydney with information from a literature review, and to develop a simple predictive model relating AERs, in-tunnel NO₂ concentrations and in-vehicle NO₂ concentrations.

The study will also provide a considerable amount of additional information that will inform the design and operation of future road tunnels, including:

- In-tunnel pollutant NO₂ concentration profiles (concentration as a function of distance into the tunnel). To date, mobile monitoring methods have not been used to give high-resolution NO₂ concentration profiles inside tunnels.
- Driving patterns in Sydney for both surface roads and tunnel roads. It will be of interest to see, for example, how speed variation^b compares for surface roads and tunnel roads.

1.1.3 Purpose of literature review and gap analysis

This Report is the first deliverable from the project, and contains the following:

- A literature review which identifies the main factors influencing AERs and in-vehicle pollutant concentrations, and summarises models that have been developed to characterise these (Chapter 2).
- A review of suitable measurement methods for CO₂ (for determining AERs) and NO₂ (Chapter 3).
- A review of road tunnels in Sydney (Chapter 4).
- A description of the Sydney car fleet (**Chapter 5**).

^b Emissions from road vehicles are usually stated as a function of average trip speed. However, the amount of variation in speed during a trip (for a given average speed) is an important determinant of emissions. Statistical measures such as absolute positive acceleration (APA) or relative positive acceleration (RPA) can be used to describe this variation in speed.

- A gap analysis (**Chapter 5**).
- References (Chapter 7).

2 LITERATURE REVIEW

2.1 Background

This chapter of the report presents the findings of the literature review.

Many studies in the scientific literature, dating back some 50 years, have described measurements of in-vehicle pollutant exposure. By comparison, few studies have linked on-road and in-vehicle pollution through measurements of I/O concentration ratios. Even fewer studies have focussed on pollutant concentrations inside vehicles being driven through tunnels. Moreover, much of the earlier work has dealt with CO rather than NO₂.

The chapter describes the central role of the vehicle air exchange rate (AER) in determining the relationship between pollutant concentrations inside and outside a vehicle, and the factors affecting this relationship. It also summarises the models that have been developed to predict in-vehicle exposure.

2.1.1 Air exchange rate

The AER in an enclosed space, such as a vehicle cabin, describes how many times each hour a volume of air equal to the volume of the space enters, and is also referred to in some literature as air changes per hour (ACH). The incoming air displaces (*i.e.* exchanges) an equivalent volume of in-cabin air and this is represented schematically in **Figure 2-1**.

Figure 2-1: Schematic representation of 1 ACH (Charlesworth, 1988)

During both mobile and stationary vehicle operation the exchange of air occurs between the vehicle cabin and the outside environment through leaks in the body of the vehicle (door seals, window cracks, etc.) and through the ventilation system when it is set to draw air into the cabin.

The AER has been shown to be a key determinant of in-vehicle exposure to traffic pollutants, including Particle Number Concentrations (PNC) (Goel and Kumar 2015), and thus the AER controls how much on-road pollution is able to reach the cabin (e.g. Knibbs et al., 2010). It is therefore important to have high quality measurements in order to understand the relationship between pollutant levels in these two locations.

While the AER is one of the main factors affecting on-road to in-cabin pollutant transport, it is affected in turn by several parameters. These include the size and distribution of air leakage sites, pressure differences induced by wind and temperature, mechanical ventilation system settings, occupant behaviour and vehicle speed **(Fletcher and Saunders, 1994)**.

2.1.2 I/O ratios

The inside-to-outside ratio (I/O) of pollutants represent the ratio of the concentrations of in-vehicle pollutants to the concentration of outside-air pollutants. There has found to be a close correspondence between I/O ratio and AER (R² = 0.75 - 0.81), and this is dependent upon on the in-vehicle ventilation settings **(Knibbs et al., 2010; Hudda et al., 2011)**. At relatively polluted locations, such as on busy urban roads or in road tunnels, air continually replenishes in the vehicle cabin with pollutants from the outside environment. Under such circumstances a lower AER would be desirable and air-recirculation mode has been shown to be preferable when driving in congested urban traffic **(Chan and Chung, 2003)**. If ambient concentrations of a pollutant are low but for some reason the levels are increasing inside a vehicle, a high AER is desirable **(Chan, 2003)**.

The AER and I/O ratio are dependent, in turn, upon vehicle age (or model year), country of manufacture, vehicle speed and fan strength **(Knibbs et al., 2009; Hudda et al., 2011; Hudda et al., 2012)**. These factors are discussed below in greater detail.

2.2 Influencing factors

2.2.1 Vehicle age/model year

In early investigations the average I/O ratio for CO during normal driving on open roads was found to range from 0.3 (Hickman and Hughes, 1978), up to 1.6 (Chan *et al.*, 2002); however, the majority of studies found that the ratio was close to unity (Colwill and Hickman, 1980; Petersen and Allen, 1982; Rudolf, 1990; Chan *et al.*, 1991; Koushki *et al.*, 1992; Lawryk and Weisel, 1996; Clifford *et al.*, 1997). Ratios close to unity were also observed for VOCs and NO₂ (Febo and Perrino, 1995). These findings suggest that old vehicles had high AERs and were quite 'leaky', leading to concentrations of pollutants in vehicles were at similar levels to on-road air pollution.

Modern vehicles generally have significantly lower AERs due to improved filters, and have the potential to be an inexpensive solution to reduce human exposure to vehicle pollution (**Pui et al., 2008**). Knibbs et **al. (2009)** measured I/O ratios for a range of vehicles driving through tunnels in Sydney; the lowest I/O ratios were found for modern post-2005 vehicles under recirculation (RC) conditions and a low fan speed. However, I/O ratios were overall similar for post-2005 cars (0.08 - 0.68), and older models from 1989 and 1998 (0.29 - 0.47). The I/O ratios were high for models of all age under outside air intake (OA) conditions (0.89 - 1.04), except for the filter-fitted 2005 VW Golf. Therefore, advances in vehicle air filters would be expected to reduce I/O ratios in the future. Air filters in modern cars have also been shown to slightly reduce in-cabin UFP concentrations (**Pui et al., 2008**; **Qi et al., 2008**).

Hudda et al. (2011) found that the AER increased with speed for older vehicles under OA conditions; however, this did not have a significant effect on the I/O ratio. Under RC conditions, AER and I/O ratios were strongly correlated with vehicle speed – regardless of vehicle age. A further discussion of the effects of vehicle speed is given in the following section.

2.2.2 Vehicle manufacturer

The vehicle manufacturer (or country of origin) has a demonstrated effect on the AER due to the quality of manufacturing. Higher quality vehicles are expected to have lower AERs and lower I/O ratios. For example, the model developed by **Hudda et al. (2012)** has separate 'manufacturer adjustments' for country of origin. Other things being equal, a vehicle manufactured in the US is expected to have an AER that is nearly 50% higher than a Japanese vehicle and about twice as high as a vehicle manufactured in Germany. The test vehicles will therefore include, as far as possible, vehicles originating from different countries.

2.2.3 Vehicle speed

Vehicle speed also affects the AER and I/O ratio, whereby faster speeds for vehicles of varying ages have been shown to lead to greater AERs and higher I/O ratios, suggesting that pressure differences between out-of-vehicle and in-vehicle air, as well as outside air turbulence, impact the rate at which air enters a vehicle (Fruin et al., 2011; Ott et al., 2008; Knibbs et al., 2009).

Under RC conditions and driving at a speed of 60 km/h, **Fruin et al. (2011) and Knibbs et al. (2009)** determined that the number of air changes per hour was 1.0 for the most airtight vehicle, and 33.1 for the least airtight vehicle. Increasing the speed to 110 km/h increased the number of air exchanges per hour to 2.6 and 47.1 for the most airtight vehicle and least airtight vehicle, respectively. Thus the AER is higher for less airtight (old) vehicles even under low speeds, and more airtight (modern) vehicles have lower AERs, even under high speeds.

2.2.4 Vehicle ventilation settings

Vehicles are generally designed to provide two different types of ventilation inside the cabin. The OA setting allows for air to be sourced from outside the vehicle and replenish the in-vehicle air. Under this setting, air from the outside is able to flow into the vehicle before being exhausted through an area at the front of the vehicle. Alternatively, when the RC setting is chosen the outside air entry point is sealed and pre-existing air from within the cabin is recirculated with the assistance of a fan. Evidently this will have a large impact on the AER and I/O ratio. In addition, the ventilation fan speed affects these parameters and this is also discussed in this section.

A study in Hong Kong showed that when driving around high-pollution environments under OA conditions, pollutant concentrations generally reflect outside air concentrations (Chan and Chung, 2003). This can lead to in-vehicle pollutants concentrations of 0.3 and 2.5 ppm for NO_x and CO, respectively, which is close to the limits recommended by the World Health Organization. In contrast, under RC conditions in-vehicle NO_x concentrations showed no relationship with outside concentration levels; however, CO did show a strong relationship with outside concentration levels (R² = 0.80 vs 0.22), suggesting that CO may be prone to in-vehicle penetration than NO_x. As discussed previously, Knibbs *et al.* (2009) found that air changes per hour and I/O ratios were much lower under RC conditions compared to under OA conditions.

In addition to RC or OA settings, the fan speed can also affect in-vehicle concentrations of CO and NO_x. **Knibbs et al. (2009)** showed that higher fan speeds under RC conditions decreased the I/O ratios, which may suggest that pollutants are diluted by increased mixing of the in-vehicle air. In contrast, I/O ratios increased at higher fan speeds under AC conditions, which is likely due to more air and therefore more pollutants being cycled into the vehicle.

2.3 In-tunnel studies

Studies have shown that in-vehicle pollutant concentrations are significantly higher whilst driving through tunnels compared with driving on surface roads (Löfgren et al., 1991; Barrefors and Petersson, 1992; Lawryk and Weisel, 1996). A study performed to determine the influence of traffic intersections on PNCs concluded that in-cabin PNCs increased during congestion at intersections, particularly in built up areas where there was little opportunity for pollutants to disperse (Goel and Kumar, 2015). The study highlights potentially the largest cause of pollutants concentration increases in tunnels- the inability of pollutants to disperse. Uncertainties however still remain regarding how the concentration of pollutants varies with the distance into a tunnel, and how this affects I/O ratios of pollutants.

NO₂ was one of the pollutants included in 2003 study in Sydney's M5 East tunnel for NSW Department of Health (Cains *et al.*, 2003). However, in-vehicle and in-tunnel air concentrations were measured using passive samplers, resulting in a limited temporal resolution (only one measurement was obtained per day). More recently, **Knibbs** *et al.*, (2010) showed that in-vehicle concentrations of ultrafine particles

(UFP) were much higher in tunnels compared to surface roads in Sydney. Thus exposure of humans to in-vehicle pollutants from travelling in tunnels could significantly contribute to total daily exposure levels.

Pacific Environment

limited

Distance into the tunnel appears to be linearly correlated with in-vehicle pollutant concentrations both inside and outside the vehicle. Chan and Chung (2003) showed that high concentrations of CO and NOx were found at the tunnel exit where concentrations were typically 30% higher than the entrance. This was attributed to the installation of a jet fan which pumps air through the tunnel towards the exit. Additionally, Gouriou et al. (2004) found that PM concentrations were approximately six times higher at tunnel exits compared to tunnel entrances. The highest PM concentrations corresponded to size class distributions from diesel fuel emissions. Decreased air pollutant concentrations at the entrance may potentially be due to a piston effect whereby fresh air is dragged into the tunnels by cars. Chan and Chung (2003) determined that the rise in in-vehicle pollutant concentrations in a tunnel was fastest under OA settings with NO concentrations peaking in-cabin approximately 2 minutes after an outdoor peak in NO concentrations was observed. This in-vehicle peak was determined to reach approximately 95% of the outdoor concentration but dropped quite rapidly under OA settings. In contrast, NO2 levels appeared to accumulate and build up more slowly in tunnels with peak indoor NO₂ concentrations reaching slightly above the peak outdoor concentrations. These findings suggest that the I/O ratio of NO₂ would likely be highest under RC conditions at the tunnel exit under low speeds, as this would allow time for NO₂ concentrations to build up within the vehicle. These high concentrations can be rapidly reduced using the OA setting (or opening windows) which allows for greater throughput of air and dilution effects.

In summary, it therefore would appear that the greatest contributing factors to outside air concentrations of NO, NO₂ and CO in tunnels is the distance into the tunnel (with pollutant levels inside the vehicle dropping at the tunnel entrance and then peaking after exiting the tunnel under RC ventilation conditions). Pollution levels in tunnels will also be related to the degree of traffic congestion and associated time spent in the tunnel, with high concentrations in heavy traffic. In-vehicle ventilation settings (RC or OA) have also been shown to be key controls on in-vehicle pollutant build up whilst driving through tunnels. Since air changes per hour and I/O ratios have been shown to be much lower under RC conditions compared to under OA conditions, RC conditions are recommended in polluted environments, such as tunnels and/or heavy traffic to reduce in-vehicle pollution.

2.4 Modelling AERs and I/O pollutant ratios

The time and cost-intensive nature of measuring both AERs and I/O ratios in vehicles means that it is not feasible to perform measurements on every vehicle on the market. As such, mathematical models are an attractive option for estimating in-cabin pollutant levels across the wider vehicle fleet. Models need to be general enough that they can be applied beyond a handful of vehicle models and without requiring a large number of input parameters or decisions by the user. However, they also need to be specific enough to capture inter-vehicle differences in in-cabin pollution. The most relevant models to the study are described below.

2.4.1 Vehicle AER models

An early predictive model of air infiltration into moving and stationary vehicles was presented by **Fletcher and Saunders (1994)** for a limited selection of vehicles. The model was based on vehicle or wind speed and empirically derived leakage coefficients. It was subsequently validated by **Ott et al. (2008)**, who observed a good agreement with experimental data obtained using CO as a tracer in a small selection of cars. **Ott et al. (2008)** also extended their measurements beyond those from the earlier study to include AER measurements under recirculation settings, with open windows and various vehicle speeds.

Knibbs et al. (2009) described a systematic evaluation of AERs in six stationary and moving Australian cars covering an age range of 18 years and four ventilation settings. Sulfur hexafluoride was used as a tracer gas. The authors reported associations between vehicle speed (from 0 to 110 km/h) and AERs

that were well represented by standard least-squares linear regression models. **Fruin et al. (2011)** described the largest study of in-vehicle AERs to date, involving the use of occupant-generated CO₂ to measure AERs for 59 vehicles that were representative of the Californian fleet. Using a multiple linear regression model they were able to capture 70% of the variability in the AER on the basis of four predictive variables: vehicle age, mileage (which is usually correlated with age), manufacturer, and speed. The variable with the largest effect on AER was determined to be speed (as discussed in Section 2.3). This will influence the choice of vehicle selection and this is discussed later in Section 5.

Hudda et al. (2012) compiled the data from **Fruin et al. (2011)**, **Ott et al. (2008)** and added some additional data to develop a generalised estimating equation (GEE) model that explained 68 to 79% of the variability in AERs for 73 vehicles. This model for predicting AER varies included the following variables: speed, ventilation setting, vehicle type and vehicle manufacturer.

2.4.2 Vehicle I/O models

Knibbs et al. (2011) reviewed the literature regarding I/O models for ultrafine particles in passenger vehicles and identified only two at that time – one based on empirical data (Knibbs et al., 2010) and one that was based on parameters derived from other models (Xu and Zhu, 2009). Since then, Hudda et al. (2011) have described an empirical model relating on-road to in-cabin UFP concentrations. These I/O models highlighted the dominant effect of AER on the I/O ratio, with the AER explaining up to 81% of in-vehicle UFP levels (Knibbs et al., 2010). By using data from Knibbs et al. (2010) and Hudda et al. (2011) to generate the largest dataset of passenger vehicle I/O ratios, Hudda et al. (2012) found that up to 79% of the variability in the I/O ratio could be explained from the vehicle speed, ventilation setting, speed, and vehicle age.

Knibbs et al. (2010) successfully adapted an indoor model to predict in-vehicle UFP concentrations during trips through the M5 East tunnel in Sydney. Standard mass-balance models for predicting incabin concentrations of UFPs using on-road concentrations can be readily adapted to gaseous pollutants. This approach is therefore also suitable for modelling NO₂, and this model is given as:

$$C(t) = \frac{C_{O/A}[Q_{O/A} \cdot (1 - \varepsilon_{S/A}) + Q_{INF}] + G}{Q_{O/A} + Q_{EXF} + Q_{R/A} \cdot \varepsilon_{S/A}} \times \left[1 - \exp\left(-\frac{Q_{O/A} + Q_{EXF} + Q_{R/A} \cdot \varepsilon_{S/A}}{V}t\right)\right] + C_0 \cdot \exp\left(-\frac{Q_{O/A} + Q_{EXF} + Q_{R/A} \cdot \varepsilon_{S/A}}{V}t\right)$$

Equation 1

Pacific Environment

limited

Where:

- C(t) is the particle concentration at time (t) (p cm⁻³)
- $C_{0/A}$ is the particle concentration in outdoor air (p cm⁻³)

 $Q_{0/A}$, Q_{INF} , Q_{EXF} and $Q_{R/A}$ are the flow rates of outdoor, infiltration, exfiltration and return air, respectively (m³ s⁻¹)

 $\epsilon_{S/A}\,$ is the supply air filtration efficiency of an air-handling system (-)

- G is the generation rate of particles due to the occupants (p s⁻¹)
- V is the volume of the space (m³)
- t is the time (s)

The modelled and measured concentrations from Knibbs et al. (2010) are shown in Figure 7-2.

Many of the parameters in the full form of the model are not required when modelling vehicle cabins and only key parameters are required: on-road concentration, AER, cabin volume and time. Cabin volume can be determined with sophisticated tracer gas methods but manual measurement gives results that are comparable (Ott et al., 2008).

Reactions of NO_2 with indoor surfaces can lead to significant decreases in NO_2 concentrations, particularly when air exchange is low at around one air exchange per hour (Spicer et al., 1989). The loss rate *R* of a pollutant (also termed deposition rate) is dependent upon the deposition velocity of the pollutant and the surface-to-volume ratio of the environment e.g. building or vehicle cabin. The equation for calculating the loss rate *K* is given as (Dimitrouopoulou et al., 2001):

$$K = \frac{v_d A}{V}$$

Equation 2

Pacific Environment

l imited

Where

 v_d = deposition velocity (in h⁻¹)

A/V = Surface-to-volume ratio for the building or vehicle

Literature values of the NO₂ loss rate indoors range from 0.94 - 1.04 h⁻¹ (Yang *et al.*, 2004), but the NO₂ loss rate in a vehicle cabin is not well constrained. It has been shown that for low AERs in vehicles, particle concentrations decrease and this is attributed to losses to surfaces (Fruin *et al.*, 2011). It is also possible that under RC conditions, concentrations are reduced by air passing through the in-cabin filters.

The loss rate is difficult to measure in the field as it requires a burst of NO_2 and no interference from other NO_2 sources. However, it can be reliably estimated from the relationship between the vehicle cabin

Pacific Environment

surface-to-volume ratio and reported NO₂ loss rates from the literature (Dimitrouopoulou et al., 2001; Yang et al., 2004). If the loss rate is known, the loss of NO₂ can be incorporated as a loss term in Equation 1. The effect of NO₂ loss may be assessed by comparing model predictions of NO₂ concentrations with and without a loss correction factor.

2.5 Summary and implications for study

From the work described by **Hudda** *et al.* **(2012)**, which includes by far the largest and most up-to-date AER model, it is apparent that a reasonably large proportion of variability in AER for a given vehicle (up to 79%) can be captured using information that can be obtained without the need for AER measurements. These predicted AERs can then in turn be used to estimate in-vehicle pollutant exposures. For the RMS study it is proposed that the **Hudda** *et al.* **(2012)** model be validated against measurements on a group of Australian vehicles spanning a range of ages to confirm its local applicability.

Most modelling of vehicle I/O ratios has focused on ultrafine particles. However, generic mass-balance models successfully applied to predict in-vehicle tunnel trip concentrations of ultrafine particles can be applied to NO₂. Loss terms can be added to account for the sink effects of surface reactions. Given an on-road NO₂ concentration the average in-vehicle concentration for a specified trip length can be estimated.

3 MEASUREMENT METHODS

3.1 Air exchange rates

AERs can be estimated from this information using the well-defined empirical relationships between variables such as vehicle speed and ventilation setting **(Charlesworth, 1988)**. However, some of the required parameters can be difficult to determine in practice e.g. cabin volume. This makes direct measurement of AERs an attractive alternative that also has the advantage of removing the reliance on assumptions inherent in estimating AERs.

3.1.1 Measurement approaches

The standard measurement approach for quantifying AERs uses a tracer gas to determine how much air enters a space over time (Awbi, 2003). Tracer gas testing permits direct measurement of air exchanges. Various options are identified in ASTM Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution (ASTM, 2006). These options include the initial injection of a tracer gas into an air space, followed by a characterisation of the decay in concentration due to dilution with incoming air, a constant injection of tracer gas to measure the dilution of its concentration by incoming air, or a constant-concentration approach where the level of tracer is held constant to determine dilution. All three methods are based on the same fundamental continuity equation which assumes uniform mixing of the tracer (Charlesworth, 1988):

$$V\frac{dC}{dt} = Q(C_{ext} - C_{(t)}) + F$$

Where:

- V = effective volume of an enclosure (m³)
- Q = air flow rate through an enclosure (m³ s⁻¹)
- C_{ext} = concentration of tracer in external air
- $C_{(t)}$ = concentration of tracer in internal air at time t

Equation 2

F = production rate of tracer from all internal sources

t = time

The three methods have advantages and disadvantages. The concentration-decay method is simplest to implement and analyse and doesn't require highly specialised equipment, but is unsuited to high AERs (such as a vehicle cabin when air is being drawn from outside by the ventilation system) where the decay curve cannot be accurately registered **(Kvisgaard, 1995)**. The constant-injection technique can be used over a wide range of AERs, but is more involved to analyse and interpret than the concentration-decay method. The constant-concentration technique is similarly useful in a diverse range of conditions, but requires specialised equipment to control tracer levels **(Charlesworth, 1988)**. In general, the constant-injection and constant-concentration methods yield more accurate and precise estimates of the true AER than the concentration-decay method **(Sherman, 1990)**.

Numerous tracers have been described in the literature **(Sherman, 1990)**. Some of the more commonly encountered examples include:

- Carbon dioxide (CO2)
- Sulfur hexafluoride (SF₆)
- Nitrous oxide (N₂O)
- Freon
- Helium (He)

A good tracer should gas have a negligible background concentration, be non-toxic, noncombustible, non-reactive and readily measurable by instrumentation. SF₆ has been widely used historically, including in previous Australian studies of vehicle cabin AERs (Knibbs et al., 2009). However, it requires complex and expensive instrumentation. Practical considerations regarding tracer selection are especially important in the dynamic and challenging in-cabin microenvironment. For these reasons, CO₂ is an ideal tracer because of its ease of measurement using portable instrumentation, negligible toxicity at in-vehicle levels, and because passengers are used as the tracer source it doesn't require transport and storage of tracer gas cylinders. It has been shown to be a fast, effective and low-cost method for performing AER measurements for diverse vehicle fleets (Fruin et al., 2011).

3.1.2 Applications to in-vehicle AER

Fruin et al. (2011) documented that at a fixed vehicle speed (constant AER), in-vehicle CO₂ concentrations change until an equilibrium concentration is reached whereby the production of CO₂ from vehicle occupants is balanced by the losses of CO₂ due to exchange of low CO₂ concentration outside air (i.e. the background level) with high CO₂ concentration in-cabin air. This difference is typically hundreds or thousands of parts per million (ppm) of CO₂, and is therefore easy to measure with high accuracy. This method is a variation on the constant-injection technique.

Importantly, the CO₂-based work of **Fruin et al. (2011)** agreed well with the SF₆-based measurements of **Knibbs et al. (2009)**, with an overall R² of 0.83. This agreement was strong to the point where the two data sets were statistically indistinguishable **(Hudda et al., 2012)**. This highlights the validity of the simpler to implement, faster and cheaper CO₂ method when compared to the more involved and expensive SF₆ approach.

Knibbs et al. (2009) measured ultrafine particles (UFPs) in a Sydney tunnel road (4 km in length) and nearby above-ground roads. The effects of ventilation on UFP concentration AERs was measured by using sulfur hexafluoride (SF₆) as a tracer. Their methods involved using an Innova 1412 (Lumasense Technologies, Ballerup, Denmark) photo-acoustic field gas monitor and Innova 1303 multipoint sampler

and doser. SF₆ was constantly administered into the HVAC system inlet between the front windscreen and bonnet and continuously measured. The constant injection technique was used due to its suitability for use in conditions of high ACH where ventilation used external air on the first and third fan settings. For ventilation settings where recirculate was used with fan setting one or where no ventilation was used and air could only enter the vehicle via infiltration, an SF₆ concentration-decay approach was used. Air samples were taken at the passenger side footwall vent, the passenger side right dashboard vent, and the driver's side right dashboard vent. Once tracer concentrations were stabilised (~ 10-15ppm after 15 minutes) dosing stopped and a ventilation setting was chosen on the vehicle. During testing, vehicles were driven to speeds of 0 km/h, 60 km/h and 110 km/h in order to determine the effect of speed on AERs. For the concentration-decay method the natural log of the SF6 concentration (excluding concentrations during dosing) was plotted against time elapsed and the gradient of the regression line was used to determine ACH. Due to the disruption of GPS speed measurements in the tunnel, average speeds were calculated based on the tunnel length and time taken to drive through the tunnel. To account for different wind directions, measurements were distributed evenly between travel directions and tests were performed during stable weather conditions and light winds to avoid bias. Temperature differences between in-cabin and external air of up to 11°C were measured however temperature was not identified as having an impact on infiltration rates.

Knibbs et al. (2010) added to their previous (2009) work in 2010 by performing measurements on vehicles of various ages under different ventilation settings in the M5 East road tunnel in Sydney. This study used a TSI 3007 condensation particle counter with sample points located upstream (outside the vehicle next to the HVAC intake) and downstream (near in-cabin air supply vents) of the HVAC system. Alternating samples of inside and outside vehicle concentrations were obtained by use of a valve controlled by a data logger. The line was flushed after alternating for 10-15 seconds and then a 10 second measurement was obtained.

Hudda et al. (2012) measured AERs and I/O ratios for vehicles in New York, and incorporated the work done by Knibbs to develop a model for estimating the in-vehicle passenger exposure to UFPs. In Hudda's New York study CO₂ was used as a tracer gas with measurements made by TSI Q-Trak model 7565 (TSI Inc., MN, USA, model discontinued in 2011) or LI-COR Li-820 (LI-COR Biosciences, NE, USA) which measure CO₂ by non-dispersive infrared (see **Section 3.2**). 308 AERs were measured for recirculate ventilation settings and 145 AERs were measured under outside air intake settings.

3.1.3 Summary

Based on the findings of the 2 largest studies of in-vehicle AER performed to-date, a CO₂-based constant-injection method (from the respiration of vehicle occupants) is well-suited to measuring AER inside vehicles in terms of accuracy, precision, cost and safety.

3.2 Carbon dioxide

Many different types of CO₂ analyser are available, and the characteristics (precision, response time, etc.) and cost of the options have been summarised in this Section of the Report. Air quality monitoring equipment suppliers and manufacturers were approached to determine hire costs and indicative lead times for the delivery of each type of instrument.

3.2.1 Cavity ring-down spectroscopy

The Picarro G2201-i (**Figure 3-1**) is a cavity ring-down spectrometer based on a near-IR laser to measure sample gas passed through an optical measurement cavity. According to Picarro the instrument has an effective path length of up to 20 km inside the cavity, which results in high precision, and low-volume cavity to ensure better temperature stability, faster gas exchange, lower noise and higher sensitivity. The stability of the system means that minimal calibration is required (**Picarro, 2015**).

Pacific Environment

being robust enough to be used for mobile (on-road and off-road) applications.

Figure 3-1: Picarro G2201-i (source: Picarro, 2015)

3.2.2 Electrochemical cells

The Tango TX1 is a portable, long-life, single-gas monitor that is most commonly used for for personal protection. It is a diffusion instrument for use in detecting and measuring gas present in open space. There are up to four sensor options (CO, H_2S , NO_2 or SO_2) that can be configured.

Tango TX1 measures gas at two second intervals, and continuously logs data every ten seconds. The measurement range is 0 – 1000 ppm with 200 ppb accuracy. The data log can store approximately three months of data for a unit that is on 24 hours a day.

The instrument battery powered and is compact enough to be hand held and thus allows for easy mobility.

3.2.3 Non-dispersive infrared spectroscopy

The LI-COR Li-820 (**Figure 3-2**) uses a non-dispersive infrared (NDIR) detection technique and is pump driven, thus allowing a fast response time (seconds). The Li820 has 1 ppm signal noise at 370 ppm CO₂, and a range of 0-20,000 ppm.

The unit is compact, lightweight design with low power (14 W) requirements, enabling mobility and easy configuration across multiple vehicles.

Characteristics:

- Data reported at up to 1 Hz
- > 1 ppm signal noise at 370 ppm CO₂
- Range: 0 20,000 ppm
- Lightweight (1 kg)
- Battery power option (14 W)

Figure 3-2: LI-COR Li-820 Continuous CO₂ Analyser

3.2.4 Infrared

The Recordum EC Airpointer uses infrared to measure CO₂ concentrations ranging between 0 and 2000 ppm. The response time for the Airpointer is 25 seconds. The instrument requires relatively low power supply (35 W) and weights 10 kg, making it suitable for mobile applications.

This instrument also features the capability of measuring other gaseous pollutants such as O₃, SO₂, NO, NO₂, CO and VOCs using electrochemical cell technology. In addition the instrument can also be configured to measure TSP, PM₁₀, PM₄, PM_{2.5} and PM₁ using an optical sensor.

3.2.5 Gas sensitive semi-conductor

The Aeroqual AQM65 is a compact air quality monitoring station that allows for continuous measurements of gaseous (CO₂, CO, O₃, SO₂, NO, NO₂ and VOCs) and particulate (PM₁₀ and PM_{2.5}) concentration.

The CO₂ analyser module incorporates non dispersive infrared receptor (NDIR) technology. NDIR is highly selective to CO₂ and therefore well suited to measuring the gas in ambient air. The range in measurement concentration is 0 to 2000 ppm with a response time of 10 seconds. Air is actively sampled by pump and travels through a glass and Teflon coated inlet system to the CO₂ analyser module.

Characteristics:

- > 10 second data resolution
- > Accuracy 3% of ready or 10 ppm
- Range: 0 2000 ppm
- Light weight (12 kg)
- Battery power option

Figure 3-3: Aeroqual AQM65 Continuous CO₂ Analyser

3.2.6 MidIR Absorption Spectroscopy

The CT3000 OEM analyser provides continuous and real time monitoring of multiple gases in automotive process testing and analysis. Configured as an extractive system, it provides accurate and sensitive measurements of gas composition, of up to ten gases simultaneously including CO₂.

The CT3000 is fast response featuring measurement frequency of up to 10Hz. The measurement range for CO2 is 0 to 15,000 ppm \pm 2%.

For mobile use the instrument would require fit-out that includes rack springs and does not have a battery power option.

3.2.7 Summary

The various instrumentation available for measuring CO2 concentrations as described in Section 3.2 are summarised and evaluated in **Table 3-1**. In previous AER studies, in-vehicle CO₂ has been successfully measured using portable instruments such as the TSI Q-Trak and the LI-COR Li-820. Both units use a non-

dispersive infrared (NDIR) detection technique, but the Li- 820 is pump driven, thus allowing a faster response time than the Q-Trak unit (several seconds versus 20 seconds). The Li-820 has 1 ppm signal noise at 370 ppm for CO₂, and a range of 0-20,000 ppm. Given than in-vehicle CO₂ levels reach around 2,000-3,000 ppm, compared with an external concentration of around 400 ppm, this instrument should be sufficient for the study.

Pacific Environment Limited

			TUD	ie o-i. Insitoment option	s for CO ₂ measurement			
Instrument o	option		CO2_01	CO2_02	CO2_03	CO2_04	CO2_06	CO2_07
	Туре		Gas analyser	Gas analyser	Gas analyser	Gas analyser	Gas analyser	Gas analyser
		PICARRO		Care Care Care Care Care Care Care Care				
Company			Picarro	Tango	LI-COR	Recordum	Aeroqual	Cascade Technologies
System			G2201-i	TX1	LI-820	EC Airpointer	AQM-60	CT3000
Description			Lab grade analyser	Personal protection instrument	Continuous CO ₂	Active electrochemical system	Compact air quality monitoring station	Extractive gas analyser
Web			http://www.picarro.co m/	http://www.indsci.com L	http://www.licor.com/	http://www.recordum. <u>com/</u>	http://www.aeroqual.c om/	http://www.cascade- technologies.com/
Dimensions	(mm)		43 x 18 x 45 cm	99 x 51 x 35 mm	23 x 16 x 8 cm	370 x 270 x 540 mm	370 x 270 x 540 mm 422 x 422 x 148 mm 243 x 3	
Weight (kg)		26 kg	126 g	1 kg	10 kg	12 kg	30 kg	
Operating temperature range (°C)		-10 - 45°C	-20 - 50°C	-25 - 45°C	5 - 40°C	5 - 40°C	5 - 45°C	
I/O interface		RS232, Ethernet, USB	LCD Display	RS232, USB adaptor	Ethernet	Ethernet, Wifi	Ethernet, 4-20mA	
Supply voltage (V)		100 - 240 VAC	3.6 volts	12 - 30 VDC	115 - 230 VAC	100 - 240 VAC	120 VAC	
Suitability of use in a moving vehicle		Has been used for this application in the past with significant consideration of the mounting	Deemed suitable	Deemed suitable	Deemed suitable	Deemed suitable	Would require fit-out (rack, springs)	
Power cons	umption		124 watts (analyser), 35 watts (pump)	Lithium ion battery (3 years continuous)	3.6 watts	35 watts	Unknown	Unknown
Pollutant	CO ₂	Technique	Carbon isotope	Electrochemical	Non-dispersive infrared	Infrared	Gas sensitive semiconductor	MidIR Absorption Spectroscopy
		Range	380 - 2000 ppm	0 - 1000 ppm	380 - 20,000 ppm	0 - 2000 ppm	0 - 2000 ppm	0 - 15,000 ppm
		Accuracy	200 ppb + 0.05% of reading	Unknown	<3% of readings	+/- 50 ppm +2% of readings	<3% of reading or 10 ppm	+/- 2 %
		Response	~30 seconds (10 - 90%)	14 seconds (T90)	Unknown	25 seconds	10 seconds (estimate)	Up to 10 / second
		Lower detectable limit	200 ppb (12C), 10 ppb (13C)	1 ppm	3% of readings	6 ppm	10 ppm	10 ppm
Price	Basic	Hire	\$5k / month (AGL)	Unknown	N/A	N/A	N/A	\$24k / month

Table 3-1: Instrument options for CO₂ measurement

Pacific Environment

3.3 Nitrogen dioxide

Various instruments are also available for measuring NO₂, ranging from low-cost passive sensors to highgrade laboratory instruments. The main considerations for instrument selection for the study are measurement frequency, resolution and size (portability). For example, when sampling ambient air NO₂ concentrations are usually averaged over much longer periods. A passage through a four km long road tunnel at a speed of 80 km/h, on the other hand, only takes three minutes. Sub-minute averaging periods are therefore required to give an adequate spatial resolution. The instrument resolution needs to be sufficient to enable a clear differentiation between in-vehicle and in-tunnel NO₂ concentrations (which in practice means that concentrations need to be available in the parts-per-billion range).

As with the CO₂ instruments, air quality monitoring equipment suppliers and manufacturers were approached to determine hire costs and indicative lead times for the delivery of each type of instrument.

3.3.1 Passive samplers

Passive NO₂ measurement methods, such as diffusion tubes and Ogawa-style samplers, are generally the cheapest approach and provide values in the parts-per-billion range. Passive samplers were also used in the previous study in the M5 East tunnel for NSW Health **(Cains** *et al* **2003)**. Whilst we will consider passive samplers in this evaluation of options, they are unsuitable for this measurement campaign. This is because the minimum timescale for measurements using passive samples is hours, and typically days for a precise measurement. Thus they are not suitable for in-tunnel measurements where a sub-minute measurement frequency is required.

3.3.2 Portable monitors

Many hand-held and portable NO₂ monitors are on the market. These are generally based around electrochemical sensors with quite a slow response time (e.g. 30 seconds) and a resolution of the order of 50-100 ppb. However, portable monitors can be prone to interference and we believe that such monitors should not be considered for the measurement campaign.

3.3.3 Chemiluminescence analyser

Chemiluminescence NO_x analysers are typically used in ambient air monitoring applications, and have been used in previous studies of in-vehicle NO₂ concentrations **(Chan & Chung, 2003)**. However, whilst well established for ambient monitoring, this method does have some limitations for mobile monitoring. For instance, the measurement cycle is around 60 seconds (rise/fall time <60 seconds to 95%) to calculate NO₂ concentrations. Furthermore, measurement cycles implement adaptive filtering, which reduces measurement uncertainty in a static location; this a catalytic convertor, and further prolongs the duration of measurement cycles. This technology therefore has a longer response time than would be desirable for mobile monitoring in tunnels. Measurement cycle time on a chemiluminescence analyser can be reduced by filtering noise from the measurement, but this reduces the accuracy of measurements.

We propose to use a chemiluminescence analyser as a reference method to check the validity of measurements recorded by the method that is ultimately selected for our investigations. For instance, this could be achieved by taking a chemiluminescence analyser measurements in a static location. Pacific Environment maintains an inventory of such monitors, and as such would be able to provide this to the project at minimal cost.

3.3.4 Cavity Enhanced Laser Absorption Spectroscopy

Cavity Enhanced Laser Absorption Spectroscopy directly measures NO₂ concentrations and this allows for high-frequency measurements at a rate of 200 milliseconds (ms) (Figure 3-4). Furthermore, this

analyser is capable of precisely measuring NO_2 at a detection limit of 50 parts per trillion (ppt). This machine features an automatic zero calibration, but requires a span gas calibration bottle. Power requirements are relatively low (100 watts), allowing it to be run off a battery pack.

We consider this technique as being a very good candidate for the current monitoring application. Unfortunately, this equipment is not currently available for lease in Sydney, and it would be necessary to source it from LGR (UK). This would have an impact on the project timeline and there may be cost premiums associated with sourcing such instruments quickly from overseas suppliers.

Characteristics:

- Direct measurements of NO2
- > High precision: 0.05 ppb $(1\sigma, 1s)$

limited

Pacific Environment

- > Data reported at up to 5 Hz
- Range: 0.05 1000 ppb

Figure 3-4: LGR direct NO₂ analyser

3.3.5 MidIR Absorption Spectroscopy

An extractive gas analyser (Cascade Technologies, CT3000) can record high-frequency measurements every 200 ms. However, this method has a lower detection limit of only 50 ppb, which may not be sufficient for this application. A local supplier has one available for lease at short notice. While we will evaluate the applicability of this instrument further, we anticipate that the lower detection limit may make this a poor candidate.

3.3.6 Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) can also record high-frequency measurements every 200 ms. It can also provide mid-level ppb measurements of NO₂ and is therefore an ideal candidate for this campaign. However, the SIFT-MS is limited by its heavy weight (212 kg), and for ease of applicability across multiple vehicles, the optimal configuration would be to mount the unit and dedicated power supply on a trailer to be towed behind the monitored vehicle. In such a configuration the system would be mounted on springs to minimise vibrations, and batteries would allow for 2-3 hours of data per charge. Potentially a valve can be integrated to allow for simultaneous measurements between in-car and in-tunnel concentrations. The set-up is supplied with calibration bottles, external pump to increase flowrate from vehicle to the instrument, computer control and technical support.

A SIFT-MS (Syft, V200) is available from a Sydney-based instrument provider from early June 2015. The trailer-mounted configuration of this system is seen as a limitation, given the logistical barriers that this poses in terms of vehicle selection (i.e. all vehicles will need to have a tow-bar fitted). However, a key benefit of this technology is its ability to simultaneously measure other pollutants of interest to high resolution and accuracy, which, as noted within the brief, may add additional value to the project outcomes.

3.3.7 Aerodyne Cavity Attenuated Phase Shift (CAPS)

The Aerodyne CAPS NO₂ monitor provides a direct absorption measurement of NO₂ at a wavelength of 450 nm. Unlike chemiluminescence-based monitors, CAPS requires no conversion of NO to NO₂ and is

not sensitive to the presence of other nitrogen-containing species. CAPS offers a linear response at concentrations up to several ppm of NO₂. This range would be adequate for the anticipated in-tunnel NO₂ concentrations. The CAPS requires a source of NO₂-free air for periodic (minutes to hours) baseline measurements. The standard gas flow is 0.85 litres per minute, but lower flow rates with reduced time response can be chosen without loss of sensitivity. The instrument will log 6 GB of data, downloadable via a USB port.

Pacific Environment

l imited

Figure 3-5: Aerodyne CAPS direct NO₂ analyser

The CAPS NO₂ analyser weighs 12 kg and can be battery-powered, enabling mobility and relatively easy configuration across multiple vehicles.

3.3.8 Summary

The various instrumentation available for measuring CO₂ and NO₂ concentrations as described in Sections 3.2 and 3.3 are summarised and evaluated in **Table 3-2 and Table 3-3**. As noted above, and within the brief, there is value gathering data on other vehicle pollutants during our investigations e.g., CO, fine particles and PAHs). At this stage, we have identified the SIFT-MS as a candidate technique for evaluating multiple pollutants. During this aspect of the project, we will seek to optimise the ability of our monitoring to include other pollutants of interest. We are also mindful that there may be opportunity to install additional instruments at minimal additional cost to the project, if the majority of costs are associated with the labour/logistics aspect of the work. We will provide RMS with practical options to address these additional pollutants during this work.

	Inc	trumont option	NO2 01	NO2 02	NO2 03	NO2 04	NO2 05
	1115	Туре	Gas analyser	Gas analyser	Gas analyser	Gas analyser	Gas analyser
Company			Teledyne	Teledyne	LGR	Aerodyne	Cascade Technologies
Model			T200	T500U	NO ₂ - 907-0009 (standard)	CAPS NO ₂ Monitor	CT3000
Description			Ambient analyser	Fast response NO ₂	Fast response NO ₂	Fast response NO ₂	Extractive gas analyser
Web			http://www.teledyne.com/	http://www.teledyne.com/	http://www.lgrinc.com/	http://www.aerodyne.com/	http://www.cascade- technologies.com/
Dimensions (mm)			178 x 432 x 597 mm	178 x 432 x 597 mm	10" x 38" x 14"	61 x 43 x 23 cm	243 x 312 x 463 mm
Weight (kg)			18 kg (analyser); 7 kg (pump)	15 kg	27 kg	12 kg	30 kg
Operating temperature range (°C)		range (°C)	5 - 40°C	5 - 40°C	5 - 45°C	5 - 45°C	5 - 45°C
I/O interface			Ethernet, RS232, USB	Ethernet, R\$232, USB	RS232, Ethernet, USB, analogue	RS232, USB, Ethernet	Ethernet, 4-20mA
Supply voltag	ge (V)		100 -120 V, 220 - 240 V	100 - 250 VAC	115/230 VAC	100 - 250 VAC	120 VAC
Suitability of use in a moving vehicle		oving vehicle	Would require consideration of fit-out (rack, springs, etc)	Rack mounting possible but not known how it will respond to vibration	Ruggedised version available, built for use in the field	Rack mounting possible but not known how it will respond to vibration	Rack mounting possible but not known how it will respond to vibration
Power consu	mption		80 W	80 W	100 W (standard), 150 W (advanced)	10 W	Unknown
		Technique	Chemiluminence	Cavity Attenuated Phase Shift (CAPS)	Cavity Enhanced Laser Absorption Spectroscopy (LAS)	Cavity Enhanced Laser Absorption Spectroscopy (CAPS)	MidIR Absorption Spectroscopy
Pollutant	NO2	Range	0 - 50 ppb	0 - 1 000 ppb	0.01 - 1000 ppb	0 - 3000 ppb	50 ppb - 1000 ppb
	NOZ	Accuracy	0.5% of readings above 50 ppb	0.5% of readings above 50 ppb	50 ppt	Unknown	+/- 2%
		Response	<60 s to 95%	<20 s to 95% (non EPA)	1 s	1 second (fast response version)	200 ms

Table 3-2: Instrument options for NO₂ measurement (part 1)

		Instrument option Type	NO2_01 Gas analyser	NO2_02 Gas analyser	NO2_03 Gas analyser	NO2_04 Gas analyser	NO2_05 Gas analyser
						(Of H) finds	
		Lower detectable limit	0.4 ppb	20 ppt	0.01 ppb	< 1 ppb (fast response version)	50 ppb
	Basic	Purchase	\$13k / unit	\$24k / unit	\$50k (purchase)	\$44k for 2 units	\$24k / month (2 gases)
Data a	cost	Hire	\$400 / month hire	N / A	N / A	N/A	N / A
rnce	Other		Calibration gas	Calibration gas	Battery power source	Battery power source	Calibration gas
	Other		Battery power source	Battery power source		Calibration gas	Battery power source
Availability			Available for lease (PEL)	4 - 6 weeks (TES)	8 weeks (Ecotech)	Unknown	Available for lease (Ecotech)
Location			Sydney	USA	USA	USA	Sydney
Notes			Long measurement cycle for this application; conversion required	Long measurement cycle for this application	Lead time may be an issue; pump won't run off DC (requires invertor)	No response from manufacturer	Lower detection limit of 20 ppb may not be suitable

Table 3-3: Instrument options for NO ₂ measurement (part 2)	
--	--

Instrument option		strument option	NO2_06	NO2_07	NO2_08	NO2_09	NO2_10
		Туре					FIR MultiGor
Company			Syft	Recordum	Aeroqual	Environment SA	MKS
Model			V200	EC Airpointer	AQM-60	AS32M	MultiGas 2030 HS
Description			Trailer mounted lab grade instrument	Active electrochemical system	Compact air quality monitoring station	Fast response NO2	High resolution FT-IR
Web			http://www.syft.com/	http://www.recordum.com/	http://www.aeroqual.com/	<u>http://www.environnement-</u> <u>sa.com/</u>	http://www.mksinst.com/
Dimensions	(mm)		900 x 725 x 875 mm	370 x 270 x 540 mm	422 x 422 x 148 mm	Unknown	17.5" x 12.5" x 25.5"
Weight (kg)			212 kg (trailer mounted)	10 kg	12 kg	Unknown	50 kg
Operating temperature range (°C)		re range (°C)	10 - 30°C	5 - 40°C	5 - 40°C	0 - 30°C	Unknown
I/O interface			LCD touchscreen	Ethernet	Ethernet, Wifi	Ethernet	Ethernet
Supply voltage (V)			216 - 264 VAC	115 - 230 VAC	100 - 240 VAC	Unknown	120 - 240 VAC
Suitability of use in a moving vehicle		moving vehicle	Fitted with springs in trailer configuration but concern from the supplier about durability	Deemed suitable	Deemed suitable	Rack mounting possible but not known how it will respond to vibration	Rack mounting possible but not known how it will respond to vibration
Power consu	umption		2 - 3 hours battery life per charge	35 W	Unknown	Unknown	Unknown
		Technique	Selected Ion Flowtube Mass Spectrometer (SIFT-MS)	Electrochemical	Gas sensitive semiconductor (GSS)	Cavity Attenuated Phase Shift (CAPS)	Fourier transform infrared spectroscopy (FTIR)
		Range	3 - 1000 ppb	5 - 2000 ppb	1 - 200 ppb	0.1 - 1000 ppb	Unknown
Pollutant	NO2	Accuracy	+/- 10% in ppb range	+/- 5 ppb	<3% of reading or 3 ppb	0.05 ppb at zero, 0.2 ppb at 200 µg/m3	Unknown
		Response	200 ms	25 s	10 s (estimated)	16 s (rise), 16 s (fall)	5 scans / s
		Lower detectable limit	50 ppt (VOC), 2 - 3 ppb(NO ₂)	5 ppb	l ddd l	0.1 ppb	500 ppb

						Pe Li	acific Environment
	In	strument option Type	NO2_06 Gas analyser	NO2_07 Gas analyser	NO2_08 Gas analyser	NO2_09 Gas analyser	NO2_10 FTIR
	Basic	Purchase	\$200k / unit only	N / A	N / A	\$20k / unit with pump	Unknown
	unit cost	Hire	\$22k / month	\$15k / unit (single gas)	\$25k / unit (single gas)		Unknown
Price	Other			Battery power source	Battery power source	Battery power source	Battery power source
Availability			Available for lease (TES)	4 - 6 weeks (EnviSys)	Available for sale (AirMet)	Available for sale (Norditech)	Unknown
Location			Sydney	Austria	Auckland	France	USA
Notes			Trailer mount requires tow- bar on each vehicle; possible to measure full suite of VOCs; only one available	Can combine other gas sensors to reduce cost	Can combine other gas sensors to reduce cost		Distributor in Sydney

4 CHARACTERISATION OF SYDNEY TUNNELS

Tunnel characteristics will be taken into consideration in the design of the measurement campaign and the conditions to be included (e.g. free flowing traffic or congested traffic) and to account for factors such as the prevailing in-tunnel air quality). To determine tunnel characteristics it is important to first identify the main road tunnels in Sydney that may be incorporated into the monitoring campaign. These are as follows:

Pacific Environment

Limited

- Eastern Distributor
- Lane Cove Tunnel
- M5 East Tunnel
- Sydney Harbour Tunnel
- Cross City Tunnel

Based on information already available to Pacific Environment, as well as any additional information that can be supplied by RMS, each tunnel will be characterised in terms of the following:

- Tunnel geometry (section lengths, gradients).
- Ventilation (air throughput and wind speed).
- Traffic (distributions of volume, composition and speed).
- In-tunnel pollution measurements, including an analysis of data.
- The ability of the tunnel operators to provide real-time data during the measurement campaign.

5 CHARACTERISATION OF SYDNEY CAR FLEET

5.1 Overview

For the purpose of this study there is a need to characterising the car fleet (vehicle type, fuel type, vehicle age, vehicle size and manufacturer) in Sydney for the following purposes:

- To ensure that the vehicles included in the experimental work are broadly representative of the fleet. The selection of test vehicles should reflect the composition (fuel type, vehicle type, vehicle age and vehicle size) of the passenger car fleet in Sydney, bearing in mind that the anticipated opening years for the NorthConnex and WestConnex M4 East projects are 2019 and 2021, respectively.
- To allow a scaling of the in-vehicle NO₂ model predictions (which will be for specific vehicle types) according to the future composition of the fleet.

5.1.1 Fuel type and vehicle type

ABS statistics for a recent (2014) report indicates that the Australian fleet comprises 78.8% petrol powered engines **(ABS, 2014)**. The projected information in the GMR inventory suggests by 2021 the petrol/diesel split by Vehicle Kilometres Travelled (VKT) for passenger cars will remain steady 80:20. We also propose to include a 2015 model year utility vehicle (ute) to examine any potential influence of vehicle type.

The Australian Bureau of Statistics has reported that in 2014 petrol vehicles accounted for just under 80% of the total registered vehicle fleet (all types) **(ABS, 2014)**. Information in NSW EPA's GMR emissions inventory suggests a petrol/diesel split (by VKT) for passenger cars of approximately 80:20 in 2021. Uncertainties remain in the validity of this projection due to results of an examination of vehicle registration (sales) data in NSW recently conducted by the NSW EPA **(Jones, 2015)**. Whilst there are some differences between the geographical coverage and the definitions of vehicle groups, the EPA analysis has highlighted some discrepancies between the actual vehicle sales figures and the inventory projections. NSW EPA note that the actual growth in diesel car sales has been lower than projected in the inventory. For example, the actual NSW-wide diesel proportion of sales in 2014 was 8%, compared with a projection for 2014 in the inventory of 19%.

In the context of the study there will probably be little difference between the AERs and I/O ratios for petrol and diesel cars. However, given the potential increase in the market penetration of diesel, a diesel car will be included in the study to examine any potential effects.

5.1.2 Vehicle age

It has been established in several studies that the age of the vehicle is a significant determinant in the AER and hence in-vehicle concentrations **(Knibbs et al 2009; Hudda et al 2012)**. An analysis of the petrol and diesel car fleets will be used to inform the selection. For example, **Figure 3-1** shows the projected VKT³ by vehicle model year in 2021 as a fraction of the total number of vehicles. The most recent vehicle model year available to the study will be 2015. In 2021 it is projected that 2015 model year vehicles will account for around 6% of petrol car VKT and 7% of diesel car VKT.

³ VKT taken from the Bureau of Transport Statistics Strategic Transport Model.

Pacific Environment

Limited

Figure 5-1: Proportion of vehicle activity by model year in 2021 (weighted by VKT)

Figure 3-2 shows the fraction of total VKT in 2021 that is accounted for by different model year ranges. Going from left to right on the x axis, the range of model years included increases by one year for each point. In the case of petrol cars, it is not possible to account for more than around 55% of VKT in 2021 using existing model years (in other words, 45% of VKT will be due to vehicle model years that do not yet exist). The equivalent proportion for diesel cars is 37%. This is when all existing model years going back to 1990 are included. However, the proportions of the oldest vehicles are very small. For example, in the case of diesel cars the model years between 2007 and 2015 will account for 95% of the maximum possible VKT proportion in 2021 using existing models. The corresponding range of model years is 2000-2015. There would therefore be very little point in using pre-2007 diesel vehicles and pre-2000 petrol vehicles. Moreover, to minimise obsolescence of the results, within these ranges there should be a bias in the selection towards newer existing vehicle models. Nevertheless, it would be worth retaining some older models to reflect potential worst-case conditions.

Figure 5-2: Proportion of VKT in 2021 by model year range

5.1.3 Vehicle size

A range of vehicles will be studied in order to have a representative selection of test vehicles, which will likely affect the AER. For the purpose of this literature review a distinction is made between vehicles in nominally 'small', 'medium' and 'large' categories. However, the possibility of using smaller vehicles may be restricted by the need to install measurement equipment.

Vehicle size statistics have also be analysed to determine a representative selection of test vehicles. For the purpose of this literature review, a distinction has been made between vehicles that are in nominally 'small', 'medium' and 'large' categories (see **Table 3-2**). This is based on, for example, engine size.

5.1.4 Vehicle manufacturer

The vehicle manufacturer as well as broader categories such as manufacturer origin (e.g. US or Japan) has a demonstrated effect on the AER (Fruin *et al.* 2011). For example, a 2010 model Honda Civic was shown to have a higher AER than a 2001 model Ford Contour.

The Federal Chamber of Automotive Industries (FCAI) provides information on the new car sales market for Australia. **Table 3-2** provides a summary of the top ten most popular cars sold in 2014. No statistics are available for 2015 at this stage, however, we assume that there would be only minor differences based on the 2013 to 2014 changes **(FACI, 2015)**.

Rank	Vehicle	2014	Vehicle size
1	Toyota Corolla	15%	Small
2	Mazda3	14%	Small
3	Toyota Hilux	13%	Ute
4	Hyundai i30	10%	Small
5	Holden Commodore	10%	Medium
6	Ford Ranger	9%	Ute
7	Mitsubishi Triton	8%	Ute
8	Toyota Camry	7%	Medium
9	Mazda CX5	7%	Medium
10	Volkswagen Golf	6%	Small

Table 5-1: Top 10 cars sold in 2014 (FCAI, 2015)

6 GAP ANALYSIS

In the gap analysis we determine the applicability of the reviewed literature to the assessment of intunnel and in-vehicle NO₂ concentrations in Sydney. We then identify key information gaps and limitations that could be addressed through a measurement campaign in Sydney road tunnels.

Studies show that in-vehicle pollutant concentrations are significantly higher whilst driving through tunnels compared to driving on surface roads (discussed in **Section 2.3**). Pollutant concentrations are typically higher at tunnel exits, but detailed high-frequency spatial and temporal measurements throughout a tunnel profile are lacking. For instance, NO₂ was measured in the 2003 study in Sydney's M5 East tunnel for NSW Department of Health (**Cains et al., 2003**), but at a limited temporal resolution. Real-world information on in-tunnel NO₂ concentrations is therefore required to determine how these vary in time and space.

Another major uncertainty concerns how the concentration of pollutants in tunnels affects the I/O ratios of pollutants in vehicles. The I/O ratio in vehicles is strongly dependent upon the AER, which in turn is dependent on the vehicle type, age and model (as discussed in **Section 2.2**). To determine the applicability of existing AER models to the current vehicle fleet in Sydney, AERs should be measured. This can be achieved by measuring the build-up of CO₂ in vehicles resulting from the occupants' respiration.

Most modelling of vehicle I/O ratios has focused on ultrafine particles, but generic mass-balance models have been successfully applied to predict gaseous pollutants. This could be applied to model in-vehicle tunnel trip concentrations of NO_x pollutants. The importance of in-vehicle deposition of NO₂ is unclear and this can be assess by adding loss terms to models. In the literature, accurate and highly-resolved information regarding in-vehicle NO₂ concentrations are lacking and will be addressed by this study. Constraining the I/O ratio for NO₂ in different vehicle types and at different ventilation settings is required.

7 **REFERENCES**

Australian Bureau of Statistics (2014). 9309.0- Motor Vehicle Census, Australia, 31 Jan 2014. Sourced on 25th June 2015 from

http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/F19B5D476FA8A3A6CA257D240011E088/\$File/ 93090_31%20jan%202014.pdf

ASTM (2006). Standard Test Method for Determining Air Change in a Single Zone by Means of Tracer Gas Dilution. ASTM International Standard E741-00. American Society for Testing and Materials, West Conshocken, PA.

Awbi H B (2003). Ventilation of Buildings. Second edition. Spon Press, London, 522 pp.

Barrefors G and Petersson G (1992). Volatile hazardous hydrocarbons in a Scandinavian urban road tunnel. Chemosphere, Vol. 25(5), pp. 691-696.

Cains T, Cannata S, Ressler K-A, Sheppeard V and Ferson M (2003). M5 East Tunnels Air Quality Monitoring Project. South Eastern Sydney Public Health Unit and NSW Department of Health.

Chan C-C, Ozkaynak H, Spengler J D and Sheldon L (1991). Driver exposure to volatile organic compounds, CO, ozone and NO₂ under different driving conditions. *Environmental Science and Technology*, Vol. 25(5), pp. 964-972.

Chan L Y, Liu Y M, Lee S C and Chan C Y (2002). Carbon monoxide levels measured in major commuting corridors covering different land use and roadway microenvironments in Hong Kong. *Atmospheric Environment*, Vol. 36(2), pp. 255-264.

Chan A T (2002). Commuter exposure and indoor-outdoor relationships of carbon oxides in buses in Hong Kong. *Atmospheric Environment*, Vol. 37, pp. 3,809–3,815.

Chan A T and Chung M W (2003). Indoor-outdoor air quality relationships in vehicle: effect of driving environment and ventilation modes. *Atmospheric Environment*, Vol. 37, pp. 3,795-3,808.

Charlesworth P S (1988). Air Exchange Rate and Airtightness Measurement Techniques – An Applications Guide. Air Infiltration and Ventilation Centre, Coventry, 228 pp.

Clifford M J, Clarke R and Riffat S B (1997). Drivers' exposure to carbon monoxide in Nottingham, UK. *Atmospheric Environment*, Vol. 31(2), pp. 271-276.

Colwill D M and Hickman A J (1980). Exposure of drivers to carbon monoxide. Journal of the Air Pollution Control Association, Vol. 12(30), pp. 1,316–1,319.

Dimitroulopoulou C, Ashmore M R, Byrne M A and Kinnersley R P (2001). Modelling of indoor exposure to nitrogen dioxide in the UK. Atmospheric Environment, Vol. 35, pp. 269-279.

Febo A and Perrino C (1995). Measurement of high concentration of nitrous acid inside automobiles. *Atmospheric environment*, Vol. 29(3), pp. 345-351.

Federal Chamber of Automotive Industries (2015). 2014 new car sales results. Sourced 25th June 2015 from http://www.fcai.com.au/news/index/index/year/all/month/all/article/379

Fletcher B and Saunders C J (1994). Air change rates in stationary and moving motor vehicles. Journal of Hazardous Materials, Vo. 38, pp. 243-256.

Fruin S A, Hudda N, Sioutas C and Delfino R J (2011). Predictive Model for Vehicle Air Exchange Rates Based on a Large, Representative Sample. *Environmental Science and Technology*, Vol. 45, pp. 3,569-3,575.

Pacific Environment

Goel, A and Kumar P (2015). Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. *Atmospheric Environment*, Vol. 107, pp. 374-390.

Gouriou F, Morin J-P and Weill M-E (2004). On-road measurements of particle number concentrations and size distributions in urban and tunnel environments. *Atmospheric Environment*, Vol. 38, pp. 2,831-2,840.

Hickman A J and Hughes M R (1978). Exposure of drivers to carbon monoxide. TRRL Report no. 798, Transport and Road Research Laboratory. Crowthorne, Berkshire. United Kingdom.

Highways Agency, The Scottish Executive Development Department, The National Assembly for Wales and The Department of the Environment for Northern Ireland (1999). Highway Structures Design (Substructures and Special Structures) Materials. Design of Road Tunnels. Design Manual for Roads and Bridges. Volume 2, Section 2 Special structures, part 9. BD78/99. The Stationery Office, London.

Hudda N, Kostenidou E, Sioutas C, Delfino R J and Fruin S A (2011). Vehicle and Driving Characteristics That Influence In-Cabin Particle Number Concentrations. *Environmental Science and Technology*, Vol. 45, pp. 8,691-8,697.

Hudda N, Eckel S P, Knibbs L D, Sioutas C, Delfino R J and Fruin S A (2012). Linking in-vehicle ultrafine particle exposures to on-road concentrations. *Atmospheric Environment*, Vol. 59, pp. 578-586.

Knibbs L D, de Dear R J and Atkinson S E (2009). Field study of air change and flow rate in six automobiles. *Indoor Air*, Vol. 19, pp. 303-313.

Knibbs L D, d Dear R J and Morawska L (2010). Effect of Cabin Ventilation Rate on Ultrafine Particle Exposure Inside Automobiles. *Environmental Science and Technology*, Vol. 44, pp. 3,546-3,551.

Koushki P A, Al-Dhouwalia K H and Niaizi S A (1992). Vehicle occupant exposure to carbon monoxide. *Journal of the Waste Management Association*. Vol. 42, No. 12, pp. 1,603-1,609.

Kvisgaard B (1995). Air distribution measurements in cars using tracer gas. In: Proceedings of Associazione Technica Dell' Automobile Third International Conference on Vehicle Comfort and Ergonomics, Bologna, Paper 95A1057, pp. 443-452.

Lawryk N J and Weisel C P (1996). Concentrations of volatile organic compounds in the passenger car compartments of automobiles. *Environmental Science and Technology*, Vol. 30, pp. 810 - 816.

Löfgren L, Persson K, Stromvall A-M and Petersson G (1991). Exposure of commuters to volatile aromatic hydrocarbons of petrol exhaust. Science of the Total Environment, Vol. 108, pp. 225-233.

Ott W, Klepeis N and Switzer P (2008). Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke. *Journal of Exposure Science and Environmental Epidemiology*, Vol. 18, pp. 312–325.

Petersen W B and Allen R (1982). Carbon monoxide exposures to Los Angeles area commuters. Journal of the Air Pollution Control Association. Vol. 32, No. 8, pp. 826-833.

Picarro (2015). PICARRO G2201-i CRDS Analyzer for Isotopic Carbon in CO₂ and CH₄. Promotional leaflet. PICARRO Inc., Santa Clara, Ca, USA.
Pui D Y H, Qi C, Stanley N, Oberdorster G and Maynard A (2008). Recirculating air filtration significantly reduces exposure to airborne nanoparticles. *Environmental Health Perspectives*, Vol. 116(7), pp. 863-866.

Pacific Environment

l imited

Qi C, Stanley N, Pui D Y H and Kuehn T H (2008). Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors. *Environmental Science Technology*, Vol. 42 (11), pp. 4,128-4,132.

Rudolf W (1990). Concentrations of air pollutants inside cars driving on highways. Science of the Total Environment, Vol 93, pp. 263-277.

Sherman M H (1990). Tracer-Gas Techniques for Measuring Ventilation in a Single Zone. Building and Environment, Vol. 25(4), pp. 365-374.

Spicer C W, Coutant R W, Ward G F, Joseph D W, Gaynor AJ and Billick I H (1989). Rates and mechanisms of NO₂ removal from indoor air by residential materials. *Environment International*, Vol. 15, pp. 643-654.

Xu B and Zhu Y (2009). Quantitative analysis of the parameters affecting in-cabin to on-roadway (I/O) ultrafine particle concentration ratios. *Aerosol Sci. Technol.*, Vol. 43, pp. 400–410.

Yang W, Lee K and Chung M (2004). Characterization of indoor air quality using multiple measurements of nitrogen dioxide. *Indoor Air*, Vol. 14, pp. 105–111.

Appendix B METHODOLOGY REPORT

Road tunnels: reductions in nitrogen dioxide concentrations incabin using vehicle ventilation systems

Study methodology

NSW ROADS AND MARITIME SERVICES

Job ID. 20336

30 July 2015

PROJECT NAME:	Road tunnels: reductions in nitrogen dioxide concentrations in cabin using vehicle ventilation systems
DELIVERABLE:	Study methodology
JOB ID:	20336
DOCUMENT CONTROL NUMBER	AQU-NW-006-20336
PREPARED FOR:	NSW Roads and Maritime Services
APPROVED FOR RELEASE BY:	Damon Roddis
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at www.pacific-environment.com © Pacific Environment Operations Pty Ltd ABN 86 127 101 642

Pacific Environment

Limited

DOCUMENT CONTROL					
VERSION	DATE	COMMENT	PREPARED BY	REVIEWED BY	
1	10.06.2015	Draft	Paul Boulter, Justine Firth, Liza McDonough, Luke Knibbs	Damon Roddis	
2	15.06.2015	Revised draft	Paul Boulter, Justine Firth, Liza McDonough, Luke Knibbs	Damon Roddis	
3	25.06.2015	Revision to address comments from reviewers	Paul Boulter, Justine Firth, Liza McDonough, Luke Knibbs	Damon Roddis	
4	26.06.2015	Revision to address additional comments from RMS	Paul Boulter, Justine Firth Liza McDonough, Luke Knibbs, Ashley Martin	Damon Roddis	
5	14.07.2015	Revision to address additional comments from RMS	Paul Boulter, Justine Firth Liza McDonough, Luke Knibbs, Ashley Martin	Damon Roddis	
6	30.07.2015	Revision to address additional comments from RMS	Paul Boulter, Justine Firth Liza McDonough, Luke Knibbs, Ashley Martin, Michael Patterson	Paul Boulter	

Pacific Environment Operations Pty Ltd: ABN 86 127 101 642

BRISBANE

Level 1, 59 Melbourne Street, South Brisbane Qld 4101 PO Box 3306, South Brisbane Qld 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Unit 1, 22 Varley Street Yeerongpilly, Qld 4105 Ph: +61 7 3004 6460

ADELAIDE

35 Edward Street, Norwood SA 5067 PO Box 3187, Norwood SA 5067 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

SYDNEY

Suite 1, Level 1, 146 Arthur Street North Sydney, NSW 2060 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

MELBOURNE

Level 10, 224 Queen Street Melbourne Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

PERTH

Level 1, Suite 3 34 Queen Street, Perth WA 6000 Ph: +61 8 9481 4961 Fax: +61 2 9870 0999

DISCLAIMER

Pacific Environment acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Pacific Environment. Pacific Environment is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Pacific Environment does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Pacific Environment for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Pacific Environment.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Pacific Environment is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

CONTENTS

1 INTRODUCTION	A-1
1.1 Background to the study	A-1
1.2 Objectives	A-2
1.3 Purpose of study methodology report	A-2
2 OVERVIEW OF METHODOLOGY	A-4
3 SELECTION OF TEST VEHICLES	A-5
3.1 Overview	A-5
3.2 Selection criteria	A-5
3.2.1 Fuel type	A-5
3.2.2 Vehicle age	A-5
3.2.3 Vehicle size	A-7
3.2.4 Vehicle manufacturer	A-8
3.3 Vehicle matrix	A-8
4 VEHICLE INSTRUMENTATION AND TREATMENT OF DATA	A-12
4.1 Vehicle set-up	A-12
4.2 Carbon dioxide measurement	A-12
4.3 Nitrogen dioxide measurement	A-13
4.4 Vehicle operation	A-13
4.5 Video recording	A-14
4.6 Storage, processing and analysis of data	A-15
4.7 Initial testing	A-15
5 MEASUREMENT OF AIR EXCHANGE RATES	A-16
6 MEASUREMENT OF NO ₂ CONCENTRATIONS	A-18
6.1 Route design and driving	A-18
6.2 Vehicle ventilation	A-19
6.3 Number of runs and schedule	A-20
6.4 Log sheets	A-20
6.5 Data from tunnel operators	A-21
6.6 Provision of monitoring data	A-21
7 MODEL VALIDATION, DEVELOPMENT AND APPLICATION	A-22
7.1 Model validation and development	A-22
7.1.1 AER model	A-22
7.1.2 I/O ratio model for NO ₂	A-23
7.2 Model application	A-26
8 REFERENCES	A-27
APPENDIX A: RESPONSE TO COMMENTS FROM REVIEWERS	A-28

1 INTRODUCTION

Pacific Environment has been commissioned by NSW Roads and Maritime Services (RMS) to undertake a study entitled Road tunnels: Reductions in nitrogen dioxide (NO₂) concentrations in-cabin using vehicle ventilation systems. The study will involve detailed measurements of NO₂ concentrations inside and outside cars that are being driven through road tunnels in Sydney, as well as the development and validation of a simple in-vehicle pollution model. The outcomes of the study will be used to inform the design and operation of future road tunnels in Australia.

1.1 Background to the study

Several major road infrastructure developments are currently planned for Sydney, and tunnels feature prominently amongst these - notably in the NorthConnex and WestConnex projects. If it is approved, WestConnex will form the longest single network of road tunnels in Australia. Air quality has historically been a factor that influences the acceptance of road tunnels by the Sydney community. The concerns of the community have tended to focus on ambient air quality and the effects of tunnel ventilation stacks. However, given the length of the planned tunnels for NorthConnex and WestConnex, and the likely volumes of traffic in the tunnels, the potential exposure of vehicle occupants to elevated in-tunnel pollutant concentrations is subject to an increasing level of scrutiny.

In many tunnels the demand for fresh air (*i.e.* ventilation sizing) to reduce in-tunnel pollutant concentrations is calculated according to guidelines from the World Road Association (PIARC). The fresh air requirements have traditionally been based upon the in-tunnel concentration of carbon monoxide (CO). In the past, most of the CO was emitted by petrol-engined vehicles. However, following the introduction and refinement of engine management and exhaust after-treatment systems, CO emissions from petrol vehicles are now very low. The increased market penetration of diesel vehicles in passenger car fleets (more so in Europe than in Australia to date) has meant that some countries are now considering the use of nitrogen dioxide (NO₂) concentrations for tunnel ventilation sizing. This shift is further supported by evidence (again, mainly from the UK) of an increase in primary NO₂ emissions from road vehicles.

For the planned tunnels in Sydney it is likely that ventilation sizing will be dictated by in-tunnel NO₂ concentrations rather than ambient air quality considerations, and the use of correct assumptions for in-tunnel exposure will therefore be vital. However, there is little evidence in the literature relating to the success or otherwise of in-tunnel NO₂ limits, other than general comments that the management of NO₂ will require the development of reliable monitoring methods and models for in-tunnel concentrations. The exposure of vehicle occupants to NO₂ in tunnels, and the implications of this for tunnel ventilation design, has not been studied in detail. Whilst this is considered in some overseas guidance, such as the the UK Design Manual for Roads and Bridges **(Highways Agency et al., 1999)**, it is not explicitly addressed by PIARC or other Australian guidance.

In response to ongoing concerns about tunnel-related air quality, the NSW Government has established an Advisory Committee on Tunnel Air Quality. The Committee is chaired by the NSW Chief Scientist & Engineer, and includes representatives from several government departments, including RMS. In its *Initial Report on Tunnel Air Quality*^d, the Committee advised that work be undertaken to:

'...research, develop and make recommendations on in-tunnel NO $_2$ limits that would provide an appropriate level of protection in the medium to long term.'

d http://www.chiefscientist.nsw.gov.au/reports

The Committee has set up a Working Group to collate information on the air exchange rates (AERs) of passenger vehicles and the effectiveness of vehicle ventilation systems in reducing occupant exposure to NO₂ in road tunnels in Sydney.

Pacific Environment

This study has been established by RMS to obtain primary data on exposure of vehicle occupants to NO₂. The exposure of occupants to NO₂ in tunnels will be strongly dependent upon the capacity of the vehicle's ventilation system to minimise the AER. The study therefore deals with both AERs and in-vehicle NO₂.

1.2 Objectives

The objectives of the study are as follows:

- 5. To quantify the AERs and in-vehicle NO₂ concentrations for passenger vehicles (cars only) being driven through road tunnels in Sydney. The vehicles will reflect the types and ages of the current and future passenger vehicle fleet and, as far as possible, will include some 'worst case' examples.
- 6. To compare NO₂ concentrations inside vehicles with those outside vehicles in the tunnel air, and subsequently determine inside-to-outside (I/O) ratios for NO₂.
- 7. To understand the influence of vehicle ventilation settings and other parameters on in-vehicle NO₂ concentrations.
- 8. To combine the results from a measurement campaign in Sydney with information from a literature review, and to develop a simple predictive model relating AERs, in-tunnel NO₂ concentrations and in-vehicle NO₂ concentrations.

The study will also provide a considerable amount of additional information that will inform the design and operation of future road tunnels, including:

- In-tunnel pollutant NO₂ concentration profiles (concentration as a function of distance into the tunnel).
- Driving patterns in Sydney for both surface roads and tunnel roads. It will be of interest to see, for example, how speed variation^e compares for surface roads and tunnel roads.

1.3 Purpose of study methodology report

This Report is the second deliverable from the study, and describes the proposed methodology. The Report contains the following:

- A general overview of the methodology (Chapter 2).
- The procedure for the selection of test vehicles (Chapter 3).
- The instruments to be used in the vehicles and the treatment of the experimental data (**Chapter 4**).
- The experiments to determine the air exchange rates for the test vehicles (Chapter 5).

[•] Emissions from road vehicles are usually stated in models as a function of average trip speed. However, the amount of variation in speed during a trip (for a given average speed) is an important determinant of emissions. Statistical measures such as absolute positive acceleration (APA) or relative positive acceleration (RPA) can be used to describe this variation in speed.

- The experiments to determine the I/O NO₂ ratios for the test vehicles (Chapter 6).
- Model validation, development and application (Chapter 7).

Comments on the methodology were received from two peer reviewers, and the recommendations from these reviews have been used to improve the methodology. The responses to the specific comments received are presented in **Appendix A**.

2 OVERVIEW OF METHODOLOGY

The study methodology has been designed to address the findings and recommendations of the literature review and gap analysis, and will fill the main gaps in the knowledge within the required time frame. A simplified representation of the overall methodology is shown in **Figure 2-1**, and the various steps are explained in subsequent Chapters.

Figure 2-1: Overview of methodology

Several different cars will be used in the experimental work. The cars will be broadly representative of the Sydney fleet and, just as importantly, their characteristics will cover the range of variables in the AER an in-vehicle pollution models. Each vehicle will be instrumented for the measurement of AERs (using a tracer gas), in-vehicle NO₂ and in-tunnel NO₂.

The AER for a given vehicle depends on the size and distribution of air leakage sites, pressure differences induced by wind and temperature, mechanical system operation, and occupant behaviour. Air exchanges may be calculated from this information. However, some of the required parameters can be difficult to determine, and tracer gas testing permits direct measurement of air exchanges. In this study the tracer gas will be CO₂. The AERs for the test vehicles will be determined for steady-state vehicle (and ventilation) operation.

The AER measurements will be used to validate an existing model for AERs and in-vehicle pollutant concentrations. The AER will be one of the key inputs to another model to determine in-vehicle exposure to NO₂ for specific vehicle types. The validated model will then be applied to estimate in-vehicle exposure to NO₂ for the wider Sydney fleet, allowing for the different characteristics of different vehicle types and their representation in the fleet.

3 SELECTION OF TEST VEHICLES

3.1 Overview

The test vehicles will be selected to reflect the range of characteristics of the vehicles in the Sydney fleet, bearing in mind that the anticipated opening years for the NorthConnex and WestConnex M4 East projects are 2019 and 2021, respectively.

The selection of vehicles will be based on the following considerations:

- The likely composition of the car fleet in terms of fuel type, vehicle type, vehicle age and vehicle size in 2021. The VKT by vehicle type will also be considered. This is to ensure that the majority of vehicle models in the test programme will not be 'outliers' in the fleet.
- Car sales by vehicle model.
- Sources of vehicles for the test programme. For example, hire companies tend to have a fleet of
 relatively new vehicles, and so an alternative source is required for older vehicles (such as staff
 cars).
- The need to select vehicles that cover a reasonably wide range of AER model parameters, rather than focussing on a narrow range of characteristics. Several older vehicles will therefore be included in the test programme as well as new ones, and vehicles from different manufacturers will be used.

3.2 Selection criteria

3.2.1 Fuel type

The Australian Bureau of Statistics has reported that in 2014 petrol vehicles accounted for just under 80% of the total registered vehicle fleet (all types) **(ABS, 2014)**. The information in NSW EPA's GMR emissions inventory suggests a petrol/diesel split (by VKT) for passenger cars of approximately 80:20 in 2021. However, an examination of vehicle registration (sales) data in NSW has recently been conducted by NSW EPA (Jones, 2015). Whilst there are some differences between the geographical coverage and the definitions of vehicle groups, the EPA analysis has highlighted some discrepancies between the actual vehicle sales figures and the inventory projections. NSW EPA note that the actual growth in diesel car sales has been lower than projected in the inventory. For example, the actual NSW-wide diesel proportion of sales in 2014 was 8%, compared with a projection for 2014 in the inventory of 19%.

In the context of the study there will probably be little difference between the AERs and I/O ratios for petrol and diesel cars. However, due to the relatively high NO_x emissions from diesel cars it is possible that these vehicles may have a more significant 'self-polluting' effect for NO₂ under low-speed conditions. Given the potential increase in the market penetration of diesel vehicles, a diesel car will be included in the study to examine such potential effects.

3.2.2 Vehicle age

It has been established in several studies that vehicle age is a significant determinant of the AER and hence in-vehicle pollutant concentrations (e.g. Knibbs et al., 2009; Hudda et al., 2012). The AER of newer vehicles can be up to an order of magnitude lower than that of older vehicles (Knibbs et al., 2009). It is possible that the AER will increase over time due to seals degrading, and therefore older vehicles will be more susceptible to air pollution in tunnels.

The only way to assess this effect explicitly is to re-measure AERs for vehicles of a certain model and age that were measured in previous studies. However, given that the studies which previously measured AERs were carried out in 2009 and 2011 respectively **(Knibbs et al., 2009; Hudda et al., 2012)**, and the time constraints of this study, it will not be feasible to obtain the corresponding vehicles of the same model and year. Instead, vehicles from the current fleet will be allocated to nominal 'new', 'intermediate' and 'old' age bands.

An analysis of the projected car fleet in the GMR has been used to inform the definition of the age bands and the selection of test vehicles.

Figure 3-1 shows the projected VKT^f by vehicle model year in 2021 as a fraction of the total (**NB**: the data for petrol and diesel vehicles here are specific to each vehicle type, and are not additive). The newest vehicle model year available to the study will be 2015.

Figure 3-1: Proportion of vehicle activity by model year in 2021 (weighted by VKT)

Figure 3-2 shows the fraction of total VKT in 2021 that is accounted for by different model year ranges. Going from left to right on the x axis, the range of model years included increases by one year for each point. In the case of petrol cars, it is not possible to account for more than around 55% of VKT in 2021 using existing model years (in other words, 45% of VKT will be due to vehicle model years that do not yet exist). The equivalent proportion for diesel cars is 37%. This is when all existing model years going back to 1990 are included. However, the proportions of the oldest vehicles are very small. For example, in the case of diesel cars the model years between 2007 and 2015 will account for 95% of the maximum possible VKT proportion in 2021 using existing models.

In the RMS study the following age bands will be used:

- 2011-2015 model year vehicles will be considered 'new'
- 2006-2010 model year vehicles will be considered 'intermediate'
- Pre-2006 model year vehicles will be considered 'old'.

^f VKT taken from the Bureau of Transport Statistics Strategic Transport Model.

Although pre-2006 vehicles are not expected to constitute a significant proportion of the vehicle fleet in 2021, the AERs and I/O ratios of older vehicles will be used to establish potential worst-case conditions. Whilst the study will focus on providing actual measurements in Sydney tunnels, the AERs determined for older vehicles in previous studies will be used predict I/O ratios for NO₂ using the model developed by **Hudda et al. (2012)**.

Pacific Environment

Limited

Figure 3-2: Proportion of VKT in 2021 by model year range

3.2.3 Vehicle size

Hudda *et al.* (2012) showed that cabin volume is negatively correlated with AER. **Table 3-1** lists information of vehicle size class, including estimated cabin volume based on US standards (US **Department of Energy, 2015)**. The mid-point of the cabin volume range was used for the AER model estimates shown in **Figure 3-3** and discussed in **Section 3.3**.

Size Class (abbrev)	Size Class Detailed: Australia / EuroNCAP / US EPA	Examples	Volume Range (Mid-Point)
S	Small-Medium / Small Family / Compact	Hyundai Elantra, Honda Civic, Mazda3, Toyota Corolla, Volkswagen Golf	2,832 – 3,087 litres (2960 litres)
м	Medium / Large Family / Mid-Size	Chevrolet Malibu, Chrysler 200, Ford Fusion, Subaru Legacy, Volkswagen Passat	3115 – 3400 litres (3260 litres)
L	Large / Executive / Full Size (or US Standard Small-Mid size Station wagon / SUV)	Chevrolet Impala, Ford Taurus, Hyundai Grandeur, Holden Commodore, Toyota Avalon	3400 – 4530 litres

3.2.4 Vehicle manufacturer

The vehicle manufacturer (or country of origin) has a demonstrated effect on the AER. For example, the model developed by **Hudda et al. (2012)** has separate 'manufacturer adjustments' for country of origin. Other things being equal, a vehicle manufactured in the US is expected to have an AER that is nearly 50% higher than a Japanese vehicle and about twice as high as a vehicle manufactured in Germany. Australian vehicles are estimated to be most similar to US vehicles **(Knibbs, 2015)**. To account for this we have included a spread of manufacturers from Germany (best), Japan/South Korea (intermediate), and the US/Australia (worst).

The Federal Chamber of Automotive Industries (FCAI) provides information on the new car sales market for the whole of Australia. **Table 3-2** provides a summary of the top ten most popular cars sold in 2014. If possible, we will also aim to include popular vehicles.

Rank	Vehicle	2014	Nominal vehicle size		
1	Toyota Corolla	15%	Small		
2	Mazda 3	14%	Small		
3	Toyota Hilux	13%	Ute		
4	Hyundai i30	10%	Small		
5	Holden Commodore	10%	Medium		
6	Ford Ranger	9%	Ute		
7	Mitsubishi Triton	8%	Ute		
8	Toyota Camry	7%	Medium		
9	Mazda CX5	7%	Medium		
10	Volkswagen Golf	6%	Small		

Table 3-2: Top 10 cars sold in 2014 (FCAI, 2015)

3.3 Vehicle matrix

Note on vehicle sample size

The vehicle sample size will essentially be constrained by the timeframe for the study, which will permit a measurement campaign of no more than around two or three weeks, and the availability of measurement equipment, which will allow only one vehicle at a time to be tested. A sample size calculation to ensure statistically significant results which takes into account the size of the vehicle population (e.g. up to 100,000 vehicles per day) and the variance in the measured parameters would tend to suggest a large number of test vehicles. Given that the primary purpose of the measurements is to test an existing predictive model that is based on a large number of vehicles, the use of a relatively small sample size is not considered to be problematic.

A total of nine test vehicles will be included in the study. A target vehicle matrix based on region of manufacture, vehicle age and size is summarised in **Table 3-3**.

Manufacture Region	'New' (2011-2015)	ʻIntermediate' (2006-2010)	'Old' (Pre-2006)	Total
European	L	S	м	3
Japanese / Korean	S	м	L	3
US / Australian	м	L	S	3
	3	3	3	9

Table 3-3 Target vehicle matrix based on vehicle age, region of manufacture and size

Cabin volume / vehicle size of small (S), medium (M) and large (L) vehicles has been included as a second-level dimension in the vehicle matrix. A mix of each cabin volume class has been made within each manufacture class (row) and each age class (column). In addition, the volume classes with the lowest AER (high volume) and highest AER (low volume) have been paired with the lowest AER age/manufacturer combination (top left) and highest AER age/manufacturer combination (bottom right), respectively. This extends the range of AER values of the study to the maximum possible.

The sources of test vehicles will be a combination of those from Pacific Environment staff, car sharing websites, and rental car companies. The vehicles available at the time of writing are listed in **Table 3-4** though many more could be added. The expected AERs of these vehicles have also been calculated using the model from **Hudda et al., 2012**, which can predict the AER from the vehicle age, cabin volume and manufacturing region. Cabin volume has been estimated from the vehicle size class as explained in **Section 3.2.3**. The vehicles from this list to be used in the final matrix below have also been noted in the Table.

Based on the target matrix (**Table 3-3**) and the vehicles available (**Table 3-4**), we suggest the final vehicle matrix shown in **Table 3-5**. For each age range, the vehicles have been classified into 'best', 'intermediate' and 'worst' in terms of manufacture region. Additional classifications have been made on vehicle size class. These selected vehicles should therefore yield a range of AERs for the monitoring campaign, as shown in **Figure 3-3**.

It should be noted that it is possible that not all the specific vehicles listed in **Table 3-5** will be available for testing. If this occurs then all efforts will be made to replace them with vehicles of similar age, size and manufacture region such that the target matrix conditions are still satisfied.

It is possible that diesel cars may have increased levels of in-vehicle NO₂ due to the self-polluting effect mentioned in **Section 3.2.1**, and we will endeavour to include a diesel vehicle to test this hypothesis. We do not have a diesel car available from staff, but this may be obtainable from share or rental services. Were one to be used it would most likely be a replacement for a European vehicle since many European models have diesel alternatives.

In		Model	Aae	Size	Manufact.	Predicted AER		
Matrix	Make/model/class		Class	Class	Region	60 km/h	80 km/h	100 km/h
Pacific Environment Staff								
Ν	Hyundai Veloster (hatchback)	2012	New	S	JP/KO	4.5	7.2	5.7
Y	Subaru Outback	2006	Old	L	JP/KO	4.6	7.3	5.8
N	Mazda 3 (hatchback)	2011	New	S	JP/KO	4.7	7.5	5.9
Ν	Hyundai i30 (hatchback)	2011	New	S	JP/KO	4.7	7.5	5.9
Ν	Honda Civic	1990	Old	S	JP/KO	47.6	76.3	60.3
Ν	Ford Focus (hatchback)	2009	Int	S	JP/KO	7.6	12.1	9.6
Ν	Ford Territory (7 seater)	2005	Old	L	US/AU	7.3	11.7	9.3
Y	Hyundai i30	2014	New	S	JP/KO	4.2	6.8	5.4
N	Suzuki Swift	2007	Int	S	JP/KO	5.8	9.3	7.3
Ν	Mazda 121	2000	Old	S	JP/KO	10.9	17.6	13.9
Share Websites								
Y	Volkswagen Tiguan	2014	New	L	EU	2.3	3.6	2.9
Y	Fiat Punto	2007	Int	S	EU	4.2	6.7	5.3
N	Volkswagen Beetle	2007	Int	S	EU	4.2	6.7	5.3
N	Volkswagen Passat	2002	Old	м	EU	5.9	9.4	7.4
Y	Mercedes Benz	2002	Old	М	EU	5.9	9.4	7.4
Y	Toyota Corolla	2008	Int	М	JP/KO	5.0	8.0	6.3
Y	Holden Astra Wagon	2008	Int	L	US/AU	5.9	9.5	7.5
Y	Ford Fiesta	2004	Old	S	US/AU	10.8	17.3	13.7
Rental								
N	Holden Cruze	2013	New	м	US/AU	5.9	9.4	7.4
Y	Ford Falcon XR6	2013	New	м	US/AU	5.9	9.4	7.4

Table 3-4: Vehicles available to this study and predicted AERs 60, 80 and 100 km/h

Table 3-5: Final test vehicle matrix

Expected AER	Vehicle make and model by age band			
Performance (by Manufacturer Region)	New (2011-2015 model years)	Intermediate (2006-2010 model years)	Old (pre-2006 model years)	
Best (EU)	VW Tiguan (2014)	Fiat Punto (2007)	Mercedes Benz (2002)	
Intermediate (JP/KO)	Hyundai i30 (2014)	Toyota Corolla (2008)	Subaru Outback (2006)	
Worst (US/AU) Ford Falcon XR6 (≥2011)		Holden Astra Wagon (2008)	Ford Fiesta (2002)	
Size Class: Small, Medium, Large				

4 VEHICLE INSTRUMENTATION AND TREATMENT OF DATA

4.1 Vehicle set-up

Each test vehicle will be equipped with the following instrumentation:

- Equipment to determine AERs. This will include:
 - Analysers to measure the in-vehicle and external CO₂ concentration. The vehicle occupants will be the interior source of CO₂.
 - Associated pumps, manifolds and sample lines.
- Equipment to determine NO₂ concentrations. This will include:
 - Analysers to measure the in-vehicle and external NO₂ concentration.
 - Associated pumps and sample lines.
- Equipment to monitor record vehicle operation and position. This will include:
 - An OBD scanning tool and software.
 - o GPS
- A video camera to record the characteristics of the vehicle in front of the test vehicle.
- Data loggers and computers.

Given the rapid transit time in tunnels, separate fast-response analysers will be used for in-vehicle and external sampling. It is anticipated that multi-point sampling will be used for each instrument, whereby the sample line has several inlets.

All instruments will be powered from on-board batteries, and all equipment (instruments and batteries) will be installed in the boot of each test vehicle. The maximum sampling duration permitted by the batteries will be determined prior to the field work. Back-up batteries will be carried on-board to avoid loss of data. All instruments will be synchronised to within one second prior to the sampling for each vehicle.

Precautions will be taken to minimise the influence of other potential errors and artefacts. For example, in-vehicle samples will be collected close to the breathing zone of vehicle occupants for representativeness. All inlets/outlets for sample lines will be well sealed. Foam padding will be used to protect the equipment and dampen on-board vibration. Following each measurement, the vehicle cabin will be flushed with outdoor air for 5–10 min to remove any residual pollutants (and CO₂ during AER measurements) prior to the next measurement.

4.2 Carbon dioxide measurement

The specification, cost and practicality of various different instruments for measuring in-vehicle CO₂ concentrations were assessed in the literature review **(Boulter et al., 2015)**. Previous AER studies have shown that expensive, laboratory-grade instruments are not required for the measurement of in-vehicle CO₂. For example, in-vehicle CO₂ has been successfully measured using portable instruments such as the TSI Q-Trak and the LI-COR Li-820. Both these instruments use a non-dispersive infrared (NDIR) detection technique, but the Li-820 is pump driven, thus allowing a faster response time than the Q-Trak unit (several seconds versus 20 seconds). The Li-820 has 1 ppm signal noise at 370 ppm CO₂, and a range of 0-20,000 ppm. Given than in-vehicle CO₂ levels reach around 2,000-3,000 ppm, compared with an external concentration of around 400 ppm, this instrument will be sufficient for the study. The

unit is compact, lightweight design with low power (14 W) requirements enabling mobility and easy configuration across multiple vehicles.

4.3 Nitrogen dioxide measurement

As with CO_2 , various instruments for measuring NO_2 – ranging from low-cost, passive sensors to high grade laboratory instruments – were considered in the literature review (**Boulter et al., 2015**).

The main considerations for instrument selection for this study are measurement frequency, resolution and size/portability. For example, a passage through a four kilometre long road tunnel at a speed of 80 km/h takes three minutes. Sub-minute averaging periods are therefore required to give an adequate spatial and temporal resolution. However, when sampling ambient air the NO₂ concentrations are usually averaged over longer periods. The instrument resolution also needs to be sufficient to enable a clear differentiation between in-vehicle and in-tunnel NO₂ concentrations, which in practice means that concentrations need to be available in the parts-per-billion range.

Based on the outcome of the literature review we propose to use two Aerodyne Cavity Attenuated Phase Shift (CAPS) NO₂ analysers, one to measure interior concentrations and the other to measure external concentrations.

The CAPS analyser provides a direct absorption measurement of NO₂ at a wavelength of 450 nm. Unlike chemiluminescence-based monitors, CAPS requires no conversion of NO to NO₂ and is not sensitive to the presence of other nitrogen-containing species. The Aerodyne CAPS instrument can provide response times of up to 1Hz with a NO₂ resolution of approximately 1 ppb and a linear response at concentrations up to several ppm. This range would be adequate for the anticipated in-tunnel NO₂ concentrations. The CAPS requires a source of NO₂-free air for periodic (minutes to hours) baseline measurements. The standard gas flow is 0.85 litres per minute, but higher flow rates with reduced time response can be chosen without loss of sensitivity. The instrument will log 6 GB of data, downloadable via a USB port. The CAPS NO₂ weighs 12 kg and can be battery powered (power requirements are 100 W) enabling mobility and relatively easy configuration across multiple vehicles.

The proposed experimental method would include multipoint sampling for both the in-vehicle and outside-vehicle NO₂. For the outside-vehicle measurements the sampling inlets will be placed at a practical location towards the front of the vehicle that is representative of the ventilation intakes. An identical system will be used to measure the concentration in the cabin. Instrument exhaust will be transported to, and released from, the rear of the vehicle.

Instruments will be zero and span validated/calibrated on a daily basis, and multipoint calibration will be undertaken on a weekly basis.

4.4 Vehicle operation

The operation and position of each test vehicle will be logged continuously so that any parameters that might potentially affect the AER and in-vehicle pollution levels are recorded.

The output from the on-board diagnostics (OBD) port of each vehicle will be recorded using a scanning tool and software. There will be a need to ensure that the selected test vehicles are capable of communicating according to one of the approved protocols (e.g. ISO 9141, J1850, KWP2000 or CAN). On-line data acquisition will be achieved via a simple interface that is connected to the serial port of a standard PC having OBD-scanning software. A variety of vehicle operation parameters will be recorded in real time (around 2 Hz). The most important parameter will be vehicle speed, although other potentially useful information will be collected as a matter of course, such as engine speed and engine load. An example output is shown in **Figure 4-1**.

A GPS receiver (e.g. Garmin 62S, or equivalent) will also be used to log the location, speed, bearing, trip distance, and altitude of each vehicle. The OBD data and a manual record of vehicle location will be used as back-up where the GPS signal is lost (e.g. inside tunnels). A logging frequency of 1Hz will be used.

Pacific Environment

Limited

The following parameters will be recorded:

- Date (GPS).
- Time (GPS).
- Vehicle speed (GPS/OBD).
- Engine speed (OBD).
- Vehicle position (GPS/OBD).

Figure 4-1: Example of OBD output

4.5 Video recording

Each vehicle will be equipped with a forward-facing video camera to continuously record the characteristics of the vehicle in front of the test car. The video information could be useful to explain any unusually high peaks in NO₂. Additionally, this information might be used to correct potential bias if measurements were to occur during periods when, for example, trucks comprise a high proportion of the traffic. It is worth adding that the vehicle in front of the test vehicle should have a proportionally lower impact on the measurements with increased distance into a tunnel.

All measurements will be stored on data loggers or laptop computers, and will transferred to the Pacific Environment server and the end of each day. The measurements will then be subjected to established QA/QC precedures to remove or correct artefacts, calibration periods, *etc*.

Pacific Environment

limited

The effects of the various sampling parameters on the I/O concentration ratio could be determined using statistical techniques such as multi-factor analysis of variance (ANOVA), with exclusion of covariates where there are no significant relationships. However, the primary purpose of the measurements would be model validation, and therefore most of the statistical analysis would focus on descriptive and simple analytical statistics. This applies to both AER and NO₂ measurements.

The NO_2 measurements will be obtained for short averaging periods (probably of the order of 10 seconds). So, in the case of tunnels, for example, we will provide:

- Interior and exterior NO₂ concentrations (and I/O ratios) by time and distance, including an examination of time lags (where observed) between external and in-vehicle concentrations.
- Mean inside-vehicle NO₂ concentration by road section.
- Mean outside-vehicle NO₂ concentration by road section.
- Mean I/O NO₂ ratio by road section.
- I/O NO₂ ratio vs outside-vehicle concentration.

The NO₂ concentration data will be presented graphically and summarised in tables.

4.7 Initial testing

A one-day period will set aside for the initial testing of the instrumentation in order to identify any potential issues with sampling and logistics.

5 MEASUREMENT OF AIR EXCHANGE RATES

The AERs for the test vehicles will be measured directly. It was noted in the literature review that the best approach for quantifying AERs is to use a tracer gas to determine how much air enters a given space over time. Tracer gas testing permits the direct measurement of air exchanges.

Practical considerations regarding tracer selection are especially important in the dynamic and challenging in-cabin microenvironment. We have adopted the use of CO₂ as the tracer gas. CO₂ is an ideal tracer because of its ease of measurement using portable instrumentation, negligible toxicity at in-vehicle levels, and because passengers can be used as the tracer source it doesn't require transport and storage of tracer gas cylinders. It has been shown to be a fast, effective and low-cost method for performing AER measurements for diverse vehicle fleets.

Various options are identified in *Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution* **(ASTM, 2006)**⁹. These options include the initial injection of a tracer gas into an air space, followed by a characterisation of the decay in concentration, and the constant injection of tracer gas to characterise the leakage rate. These options were considered in the literature review, and it was concluded that the most appropriate approach would be to use the constantinjection method^h. In fact, occupant-generated CO₂ will be used. This is essentially a variation on the constant-injection technique (*i.e.* it is assumed that the CO₂ production rate from occupants is constant for sedentary activity). This approach was used by **Fruin et al. (2011)**.

For a given vehicle speed the AER is nearly constant and the CO₂ concentrations inside the car will eventually reach an equilibrium value. The AER for each vehicle and ventilation setting will be calculated using the fundamental continuity equation (**Charlesworth**, **1988**):

$$V\frac{dC}{dt} = Q(C_{ext} - C_{(t)}) + F$$

Where:

V=effective volume of an enclosure (m³)Q=air flow rate through an enclosure (m³ s-1)C_{ext}=concentration of tracer in external airC_(t)=concentration of tracer in internal air at time tF=production rate of tracer from all internal sourcest=time

The AER tests will be conducted under real-world traffic conditions, with each test vehicle being driven at different constant speeds. As the purpose of the AER test is to determine the validity of an existing model for cars in the Sydney fleet, it will be unnecessary to test large number of speeds. We propose nominal speeds of 60 km/h and 100 km/h.

It is noted that that the speed limit in Sydney tunnels is 80 km/h. The aim of using speeds of 60 km/h and 100 km/h is to obtain data for speeds that are both achievable on public roads (low speeds are difficult) and have some separation. Based on previous tests on Australian cars we observed a linear

Equation 2

⁹ Active Standard ASTM E741: Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution. http://www.astm.org/Standards/E741.htm

^h The constant-injection technique can be used over a wide range of AERs and was adopted for the two largest studies of in-vehicle AER performed to-date

increase in AER with speed. So, by covering as wide a range of speeds as possible we will avoid out-ofsample estimation of AER at higher speeds (which makes the data applicable to more driving scenarios; e.g. whether tunnel or otherwise, now or in the future). We would therefore prefer to include 100 km/h to address the wider applicability of the model across road types, and interpolate for 80 km/h. In the previous work we also found that 3 speeds (including stationary) was sufficient, and offered the best compromise between practicality and accuracy.

Suitable roadways and periods will be identified to enable the test vehicles to be driven in a safe and uninterrupted manner at the target speeds and for a sufficient duration (around 20 minutes). Low-traffic conditions will be selected to enable steady-state conditions to be attained and to minimise changes in the outside CO₂ due to the presence of exhaust plumes from other vehicles.

AERs will be determined with windows closed, ventilation set to air recirculation, and the fan set to either 50% or as close as possible to a mid-way setting. For a subset of tests, AERs will also be determined for stationary vehicles and other fan settings.

Where the test vehicles have similar AERs, consideration will be given to adapting the NO₂ measurement part of the campaign to reduce the number of vehicles, and to therefore have more transits per vehicle.

6 MEASUREMENT OF NO₂ CONCENTRATIONS

6.1 Route design and driving

The proposed driving route is shown in **Figure 6-1**. The route has been designed so that it includes the following road tunnels:

- Lane Cove Tunnel
- Sydney Harbour Tunnel
- Eastern Distributor
- M5 East Tunnel.

The route will also include a number of surface roads.

Figure 6-1: Proposed route

The route will maximise the number of runs through each tunnel, as it follows a relatively simple trajectory. The length of this route is 30 km (one way), and a typical travel time would be between 45 and 60 minutes. We have excluded the Cross-City Tunnel from the route as it will result in a significant detour and reduce the rate at which tunnel measurements can be obtained.

Pacific Environment

limited

A passenger will also be present in the test vehicle to operate the logging equipment and to complete an information sheet for each trip. The information sheet will include details such as direction of travel, tunnel entry and exit times, vehicle ventilation conditions and comments on text conditions (adverse weather, congestion, etc.).

Measurements will also be made whilst each vehicle is stationary, with and without the engine running to account for stead-state and dynamic conditions.

6.2 Vehicle ventilation

covering both the peak and off-peak periods.

A range of vehicle ventilation conditions will be used during the sampling. These include the use of the passenger compartment ventilation fan set at, for example, 0%, 50%, and 100% of the maximum speed, open/closed windows, and the use of air conditioning. A key test condition will be the air recirculating setting, as AERs can be significantly reduced with recirculation switched on. As requested in the brief, we will also evaluate the purging effect of opening windows following tunnel transit.

A list of vehicle ventilation settings will be agreed with the Working Group prior to the measurement campaign. An example is shown in **Table 6-1**. Minimum numbers of test runs for each condition – taking into account the likely range of traffic conditions - will be determined. The emphasis will be on testing the effects of air recirculation (settings **S01**, **S02** and **S03**, **Table 6-1**). Note that setting **S03** aims to investigate the effects of turning the ventilation system from re-circulate to flow-through following tunnel transit. Setting **S04** will investigate the effect of having air recirculating settings turned off. During the initial testing phase, some runs will investigate the effect of having constant ventilation settings during the entire multi-tunnel transect, and compare these results to flushing air by opening car windows following tunnel transit.

Setting ^(a)	Windows	Air re-circulation	Air conditioning	Fan speed
S01		On	On ^(b)	50%
S02		On	Off	50%
S03	Closed ^(a)	On/Off ^c	Off	50%
S04		Off	Off	50%

Table 6-1: Provisional vehicle ventilation settings

(a) Initial tests will investigate the effects of opening the vehicle windows following tunnel transit. This is likely to result in the rapid equalisation of internal and external NO₂ concentrations.

(b) Some initial screening tests will be conducted to determine whether the air conditioning has any effect on AERs and in-vehicle NO₂.

(c) This will investigate the effect of turning the ventilation system from re-circulate to flow through following tunnel transit.

6.3 Number of runs and schedule

Note on number of runs per vehicle

One of the reviewers commented that the number of passes through the tunnels needs to be justified with a statistical power calculation.

We appreciate the desire for statistical rigour. However, it is uncommon to apply statistical power calculations to this type of study. These calculations are generally used to determine how many subjects required to detect an effect or difference between groups in health studies. The objective of the study is not to determine significant differences between on-road and in-vehicle concentrations, it is rather to measure AERs and NO₂ for local vehicles in order to test (and adapt, if necessary) a simple existing model. Covering a broadly representative sample of cars in which the known predictors of AER vary (e.g. manufacturing, odometer reading) is at least as important as testing a large number of cars to satisfy a sample size calculation. In any case, such calculations will tend to result in large sample sizes that cannot be supported by the project budget and timescale.

Our approach will involve maximising the number of test passes in order to maximise the confidence in the test results, all within the time and budget constraints. We note that where AERs for different vehicles show very similar patterns, we can consider subjecting fewer vehicles to the NO₂ measurements, with a corresponding increase in the number of passes per vehicle.

Given the typical travel time on the proposed route, assuming a 12-hour working day and limited congestion, approximately 16 runs could be completed. In practice it is likely that 10 – 12 runs could be completed per full day. It is acknowledged that this will require multiple test drivers/passengers for WHS reasons, and we will ensure risks are appropriately managed through development of Safe Work Method Statements for the measurement campaign.

Each vehicle will be tested over a two-day period. The first half-day will be devoted to the AER measurements, and the remaining 1.5 days will be devoted to the NO₂ measurements. It is anticipated the total duration of the monitoring campaign will be no less than two full weeks (we have assumed 18 days), which should equate to around 150 (one-way) runs through each of the selected tunnels, although the total will be spread over serval vehicles. Given that multiple NO₂ measurements will be made in each tunnel, a large amount of data will be generated in the study.

Previous experience has shown that the cumulative number of measurement trips is less important than capturing the maximum variability in on-road conditions by sampling at different times of the day and night. Therefore, this is prioritised over achieving the total number of desired runs.

6.4 Log sheets

To complement the logged data, each passenger will be asked to complete a trip log sheet. This will include information such as:

- Adverse weather conditions (e.g. heavy rain, fog, snow, gales, etc.)
- Unusual traffic conditions (breakdowns, accidents, etc.)

From the logged data (date and time) the trips will be classified into peak, off-peak and weekend periods.

6.5 Data from tunnel operators

Tunnel characteristics will be taken into consideration in the design of the measurement campaign and the conditions to be included (e.g. free flowing traffic or congested traffic) and to account for factors such as the prevailing in-tunnel air quality.

Based on information already available to Pacific Environment, as well as any additional information that can be supplied by RMS, each tunnel will be characterised in terms of the following:

- Tunnel geometry (section lengths, gradients).
- Ventilation (air throughput and wind speed).
- Traffic (distributions of volume, composition and speed).
- In-tunnel pollution measurements, including an analysis of data.
- The ability of the tunnel operators to provide real-time data during the measurement campaign. Tunnel system data will be requested for the period of the monitoring campaign.

6.6 Provision of monitoring data

Summary data and basic statistics from the monitoring campaign will be provided to RMS in advance of the modelling work. This will include, for example, box and whisker plots of internal concentrations, external concentrations and I/O ratios.

7 MODEL VALIDATION, DEVELOPMENT AND APPLICATION

7.1 Model validation and development

7.1.1 AER model

By far the largest and most up-to-date vehicle AER model is that described by **Hudda et al. (2012; 2013).** In this model a substantial proportion of the variability in the AER for a given vehicle (up to around 80%) can be captured using information that is easily obtained without the need for new AER measurements. This information includes vehicle age, vehicle speed, vehicle manufacturer, and ventilation settings. The predicted AERs can then in turn be used to estimate in-vehicle pollutant exposures. For the RMS study the AER model will be validated against the measurements on the vehicles spanning a range of ages to confirm its local applicability.

The AER model includes both recirculated and outdoor air ventilation settings.

The model equation for **recirculated air** is:

$$\ln(\text{AER}) = 2.79 + (0.019 \times \text{speed}) + \left[0.015 \times \text{age} + 3.3 \times 10^{-3} \text{age}^2\right] + \left[-0.023 \times \text{vol} + 6.6 \times 10^{-5} \text{vol}^2\right] + \text{Manuf Adjustment}$$

Where:

age is vehicle ageⁱ in years

vol is vehicle cabin volume

The manufacturer's adjustment is -0.71 for German vehicles and -0.39 for Japanese vehicles. If the speed is zero a -0.51 factor should be added.

The model equation for **outdoor air intake** is:

$$\begin{split} ln(AER) &= 4.20 + \left\lfloor (1.88 \times fan \ strength) \\ &+ \left(-0.92 \times fan \ strength^2 \right) \right] + (0.0048 \times speed) \\ &+ (-0.0073 \times vol) \end{split}$$

Where:

fan strength refers to the fan setting as a fraction of the maximum (e.g. 4/4)

The coefficients for fan strength and fan strength² should be 0.40 and 0.13, respectively, at zero speed, and the speed term should be -0.32 at zero speed.

Figure 7-1 shows examples of the model predictions plotted against the two most significant determinants of AER under outdoor air conditions; ventilation fan strength and vehicle speed, for a 'sub-compact' and 'large sedan' vehicle, thus capturing the full range of AERs that can be expected under outdoor air intake conditions.

¹ The predictors in the model include vehicle age but not model year (hence the former being more important than the latter).

Figure 7-1. Predicted AER under recirculate (RC) and outdoor air (OA) intake settings as a function of the most significant determinant variables (Hudda *et al.*, 2012)

Hudda et al. (2012) state that these models had good fit and are likely to have a similar ability to predict AER in different datasets. However, it is important to understand how applicable the models will be to the future vehicle fleet in Sydney. Assuming that the models can be validated for the test vehicles in Sydney, it is unlikely that there will be significant technological changes in vehicles between 2015 and 2021, and a new vehicle model in 2015 can probably be assumed to be equivalent to a new model in 2021. Any work beyond this, such as projecting improvements in vehicle design, will be rather uncertain and beyond the scope of the RMS study.

7.1.2 I/O ratio model for NO₂

Most modelling of vehicle I/O ratios has focused on UFPs. However, generic mass-balance models that been used successfully to predict in-vehicle tunnel trip concentrations of UFPs can also be applied to NO₂. A standard mass-balance model developed by **Knibbs et al. (2010)** for predicting in-cabin UFP concentrations on the basis of on-road concentrations will be adapted to predict NO₂ with some minor modifications. This approach has been employed in indoor air quality modelling for many years. **Knibbs et al. (2010)** successfully adapted from the indoor context to predict in-vehicle ultrafine particle concentrations during trips through the M5 East tunnel and is considered suitable for modelling NO₂.

Model form

Knibbs et al. (2010) successfully adapted an indoor model to predict in-vehicle UFP concentrations during trips through the M5 East tunnel in Sydney, and this approach is therefore also suitable for modelling NO₂. This model is given as:

$$\begin{split} \mathrm{C}(\mathrm{t}) &= \frac{\mathrm{C}_{\mathrm{O/A}}[\mathrm{Q}_{\mathrm{O/A}}\boldsymbol{\cdot}(1-\boldsymbol{\varepsilon}_{\mathrm{S/A}})+\mathrm{Q}_{\mathrm{INF}}]+\mathrm{G}}{\mathrm{Q}_{\mathrm{O/A}}+\mathrm{Q}_{\mathrm{EXF}}+\mathrm{Q}_{\mathrm{R/A}}\boldsymbol{\cdot}\boldsymbol{\varepsilon}_{\mathrm{S/A}}} \\ &\times \Big[1-\exp\Bigl(-\frac{\mathrm{Q}_{\mathrm{O/A}}+\mathrm{Q}_{\mathrm{EXF}}+\mathrm{Q}_{\mathrm{R/A}}\boldsymbol{\cdot}\boldsymbol{\varepsilon}_{\mathrm{S/A}}}{\mathrm{V}}\mathrm{t}\Bigr)\Big] \\ &+ \mathrm{C}_{0}\boldsymbol{\cdot}\exp\Bigl(-\frac{\mathrm{Q}_{\mathrm{O/A}}+\mathrm{Q}_{\mathrm{EXF}}+\mathrm{Q}_{\mathrm{R/A}}\boldsymbol{\cdot}\boldsymbol{\varepsilon}_{\mathrm{S/A}}}{\mathrm{V}}\mathrm{t}\Bigr) \end{split}$$

Where:

C(t) is the particle concentration at time (t) (p cm⁻³)

 $C_{0/A}$ is the particle concentration in outdoor air (p cm⁻³)

Equation 1

 $Q_{0/A},\,Q_{INF},\,Q_{EXF}$ and $Q_{R/A}$ are the flow rates of outdoor, infiltration, exfiltration and return air, respectively (m³ s⁻¹)

Pacific Environment

limited

- $\epsilon_{S/A}$ is the supply air filtration efficiency of an air-handling system (-)
- G is the generation rate of particles due to the occupants (p s⁻¹)
- V is the volume of the space (m³)
- t is the time (s)

The modelled and measured concentrations are shown in Figure 7-4.

Many of the parameters in the full form of the model are not required when modelling vehicle cabins, and the model reduces to a much simpler form. Key parameters are the on-road concentration (which will show an increasing near-linear gradient with distance into a tunnel), the AER, the cabin volume and the duration of exposure. Cabin volume can be determined with sophisticated tracer gas methods but, manual measurement gives results that are comparable (Ott et al., 2008).

Pooling data from **Knibbs et al. (2010)** and **Hudda et al. (2011)** to generate the largest dataset of passenger vehicle I/O ratios, **Hudda et al. (2012)** found that up to 79% of the variability in the I/O ratio could be explained on the basis of the same variables that explain AER (**Figure 7-3**). They were then able to combine this model with on-road concentration data to generate distributions of in-cabin concentrations to which commuters on different types of road would be exposed (**Figure 7-4**).

Figure 7-3: Predicted I/O ratios for ultrafine particles under recirculate (RC) and outdoor air (OA) intake settings as a function of the most significant determinant variables (Hudda *et al.*, 2012)

Figure 7-4: Expected in-cabin concentration for US vehicle fleet travelling on Los Angeles arterial roads and freeways under recirculate (RC) and outdoor air (OA) intake settings (Hudda et al., 2012)

NO₂ deposition

It was noted in the literature review that deposition and reactions with indoor surfaces lead to NO₂ losses that can be comparable in magnitude to the effects when air exchange is low. The effects of such losses will be incorporated into the model as a loss term. NO₂ deposition losses in a vehicle cabin

are exceedingly difficult to measure under field conditions, and the measurement of these is outside the scope of the project. However, they can be reliably estimated from the relationship between measured cabin surface to volume ratio and the deposition velocity of NO₂ in the literature. The sensitivity of predicted concentrations to the inclusion of an NO₂ loss parameter will be assessed by comparing predictions with it included and omitted.

Pacific Environment

Limited

Model assessment

The observed mean internal NO₂ levels calculated from the time series will be compared with the model prediction to assess their percent agreement. If they match the model will be deemed to be validated. If the results are discordant, then the measured AERs will be used to build the simple predictive model. The model's sensitivity to deposition will also be assessed.

7.2 Model application

Given an on-road NO₂ concentration the average in-vehicle concentration for a specified trip length can be estimated. The combined AER and I/O ratio model will be applied to the traffic and environment (NO₂ profile) in Sydney tunnels to determine a distribution of in-vehicle exposures. For example, the model will be used determine in-vehicle NO₂ concentrations for a range of vehicle types associated with external concentrations. Given the time constraints, it is likely that this will focus on a small, random sample of vehicles (not the models tested) to represent the Sydney fleet. 'Typical' I/O ratios will be determined to confirm (or otherwise) the conservatism that is inherent in in-tunnel NO₂ concentration limits.

8 **REFERENCES**

ABS (2014). Motor Vehicle Census, 9309.0.55.003. http://www.abs.gov.au/ausstats/abs@.nsf/mf/9309.0

ASTM (2006). Standard Test Method for Determining Air Change in a Single Zone by Means of Tracer Gas Dilution. ASTM International Standard E741-00. American Society for Testing and Materials, West Conshocken, PA.

Boulter P, Firth J, McDonough L and Knibbs L (2015). Road tunnels: reductions in nitrogen dioxide concentrations in cabin using vehicle ventilation systems - Literature review and gap analysis. Report AQU-NW-002-20336, Pacific Environment Limited, North Sydney.

Charlesworth P S (1988). Air Exchange Rate and Airtightness Measurement Techniques – An Applications Guide. Air Infiltration and Ventilation Centre, Coventry, 228 pp.

FCAI (2015). 2014 new car market. http://www.fcai.com.au/Sales/2014-new-car-market

Highways Agency, The Scottish Executive Development Department, The National Assembly for Wales and The Department of the Environment for Northern Ireland (1999). Highway Structures Design (Substructures and Special Structures) Materials. Design of Road Tunnels. Design Manual for Roads and Bridges. Volume 2, Section 2 Special structures, part 9. BD78/99. The Stationery Office, London.

Hudda N, Eckel S P, Knibbs L D, Sioutas C, Delfino R J and Fruin S A (2012). Linking in-vehicle ultrafine particle exposures to on-road concentrations. *Atmospheric Environment*, Vol. 59, pp. 578-586.

Hudda N, Eckel S P, Knibbs L D, Sioutas C, Delfino R J and Fruin S A (2013). Corrigendum to "Linking invehicle ultrafine particle exposures to on-road concentrations" [Atmos. Environ. 59C (2012) 578-586]. Atmospheric Environment, Vol. 64, p. 124.

Jones G (2015). Personal communication from Gareth Jones of NSW EPA to Paul Boulter of Pacific Environment.

Knibbs L D, de Dear R J and Atkinson S E (2009). Field study of air change and flow rate in six automobiles. *Indoor Air*, Vol. 19, pp. 303-313.

Knibbs L D, d Dear R J and Morawska L (2010). Effect of Cabin Ventilation Rate on Ultrafine Particle Exposure Inside Automobiles. *Environmental Science and Technology*, Vol. 44, pp. 3,546-3,551.

Knibbs L D (2015). Personal communication of Luke Knibbs of the School of Public Health, University of Queensland to Michael Patterson of Pacific Environment.

Ott W, Klepeis N and Switzer P (2008). Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke. *Journal of Exposure Science and Environmental Epidemiology*, Vol. 18, pp. 312–325.

US Dept of Energy (2015). How are vehicle size classes defined? http://www.fueleconomy.gov/feg/ info.shtml#sizeclasses

APPENDIX A: RESPONSE TO COMMENTS FROM REVIEWERS

A.1 COMMENTS FROM REVIEWER 1

Vehicle type

• Good discussion but no commitment to vehicle types or finalising source of vehicles

Pacific Environment: We have now committed to a much more specific list. More information is now provided for vehicle sources (staff, hire, share).

• It seems odd that there are only two small cars when these are more common in the fleet and there are multiple small cars in the staff cars that would be appropriate. Would not three small cars be more appropriate?

Pacific Environment: Agreed. We now have three small cars in the matrix.

<u>Monitoring</u>

• It would be good to add in the particulate matter monitoring equipment that will be used, even if it is not addressed elsewhere, so that EAC can comment on this. Even if this is provided separately to allow EAC to comment on this also.

Pacific Environment: A separate proposal has been provided.

• There needs to be additional information on the analysis of data (not just that an ANOVA may be performed).

Pacific Environment: Please see response below.

• There needs to be additional information on how windows up and windows down on exiting the tunnel will be assessed. For example I did not find information on the proportion of tunnel transits that will have windows up on exit or windows down and how any effect will be assessed.

Pacific Environment: Please see response below.

<u>AER</u>

• The speed limit of all tunnels is 80kph (or perhaps lower, and never 100kph). Is the data point of 100kph needed for some reason? Should one of 80kph be included?

Pacific Environment: It's a fair point. The idea here is to obtain data for speeds that are both achievable on public roads (low speeds are difficult) and have some separation. Based on previous tests on Australian cars we observed a linear increase in AER with speed. So, by covering as wide a range of speeds as possible, we avoid out-of-sample estimation of AER at higher speeds (which makes the data applicable to more driving scenarios; e.g. whether tunnel or otherwise, now or in the future). We would therefore prefer to include 100 km/h to address the wider applicability of the model across road types, and interpolate for 80 km/h. In the previous work we also found that 3 speeds (including stationary) was sufficient and offered the best compromise between practicality and accuracy.

Overall issues that need to be addressed

• The number of passes through the tunnels needs to be justified with a statistical power calculation.

Pacific Environment: It is uncommon to apply statistical power calculations to this type of study. These calculations are generally used to determine how many subjects required to detect an effect or

difference between groups in health studies. It is unclear to us how this is relevant to the objectives of the study, which is not to determine significant differences between on-road and in-vehicle concentrations, but rather to measure AERs and NO₂ for local vehicles in order to test (and adapt, if necessary) a simple existing model.

If sample size calculations were to be conducted, they would need to address:

- The size of the vehicle population, and hence the number of test vehicles.
- The number of measurements (number of runs) per vehicle. Consideration would also need to be given to operational conditions.

Covering a broadly representative sample of cars in which the known predictors of AER vary (e.g. manufacturer, cabin volume) is more important than testing a large number of cars to satisfy a sample size calculation. In any case, such calculations will tend to result in large sample sizes that cannot be supported by the project budget and timescale.

• There needs to be additional information on the analysis of data (not just that an ANOVA may be performed).

Pacific Environment: The methodology states that ANOVA could be used. However, as stated above, this is not the primary objective. The primary purpose of the measurements would be model validation and therefore most of the statistical analysis would focus on descriptive and simple analytical statistics. This applies to both AER and NO₂ measurements. The NO₂ measurements will be obtained for short averaging periods (probably of the order of 10 seconds), and some examples of relationships and statistics that can be explored have been added to the report.

• There needs to be additional information on how windows up and windows down on exiting the tunnel will be assessed.

Pacific Environment: This will result in the rapid equalisation of internal and external concentrations, and will show up in the direct measurements.

• Finalising the car vehicle types.

Pacific Environment: In progress. We are currently assessing vehicle availability and OBD compliance.

• Finalising NO₂ testing equipment.

Pacific Environment: An order for two CAPS NO₂ analysers has been placed with Aerodyne in the US. Two LI-COR CO₂ monitors have also been purchased.
A.2 COMMENTS FROM REVIEWER 2

<u>Overview</u>

- I generally have a high level of confidence in the proposed work. In particular I find the instrumentation selected as first choice to be suitable and the scale and scope to be broadly appropriate.
- The study design as presented has some vagueness around analysis, modelling and outputs. Understanding the analysis envisaged is crucial to being able to assess the suitability of the proposed data capture method in detail.
- At present, I feel the major risk inherent in the study design is redundancy in some areas and lack of robustness in others. This could be addressed through greater clarity over analytical plans, or adjustment if the fieldwork design.
- Some points of clarification are requested, and some alterations to the study design are suggested below.

The proposed method in brief, as I understand it:

- Please let me know if I have misunderstood any part of the design.
- Representative vehicles will be selected.
- Their air exchange rates (AER) will be measured using the CO2 method used by Fruin et al. under a limited range of conditions, and **in recirculation model only** (page 13). The amount of time required to do this has not been specified in the design.

Pacific Environment: This seems to be a misinterpretation; we will be investigating AERs under both (i) re-circulation mode and (ii) fresh outside conditions. We propose, for each vehicle, 0.5 days for AER measurements and 1.5 days for NO₂ measurements. These time periods are constrained by the project timescale.

- AERs will be estimated using the model of Hudda et al.
- The estimated and observed results will be compared. If they match the model will be deemed to be "validated". It is unclear what is planned if they do not match.

Pacific Environment: If the results are discordant, then the measured AERs will be used to build the simple predictive model. The objectives of the project only require that a model relating AER, intunnel and in-cabin levels be developed. However, given our previous involvement with the Hudda et al model, we aim to deliver additional value-added information on whether this model can be applied to the Australia context in its current form, as this would be a useful tool for future assessments. If this proves not to be the case then we will revert to addressing the key objectives as described above.

• Drive the selected vehicles through the tunnels. The design suggests 15 vehicles with 6 different ventilation settings, giving 90 combinations. If each combination were used (which is not specified in the design) there would be only 1 or 2 tunnel transect per combination.

Pacific Environment: There are tight time constraints on the study, and only one set of monitoring equipment. The vehicles must therefore be tested in series. In the original version of the vehicle matrix we had 8 vehicles. We are now proposing to use 9. Some of the AC ventilation modes will be redundant, and can be reduced to 4 (possibly fewer), especially if the early tests show little

difference between fan settings. This means that we could achieve 5 or 6 runs per fan setting. It should also be noted that each run includes multiple tunnels.

- Use observed external NO2 time series and observed AER for the vehicle as inputs to model of Knibbs et al to predict internal NO2 time series.
- What happens next is not discussed, so I can only assume that the observed time series (raw or aggregated) are compared to the modelled. Correcting for deposition losses is mentioned but it is unclear how this will be done. One approach might be to adjust a deposition term so as to improve model fit.

Pacific Environment: This is correct. The observed mean internal levels calculated from the time series will be compared with the model prediction to assess their percent agreement. The model's sensitivity to deposition will be assessed. Deposition is hard to measure in an occupied moving car, and this is outside the scope of the project. However, as detailed in the literature review, we can estimate the deposition parameter based on the surface/volume ratio of the cabin and the deposition velocity of NO₂ from the literature.

• The resulting model might then be considered to be "validated" and can be used to extrapolate results across the Sydney fleet.

Pacific Environment: This is correct. As noted in the methodology report, the model will be used to estimate the exposure of vehicle occupants to NO₂ based on the wider fleet characteristics and operational modes. We will provide 'typical' I/O ratios to confirm (or otherwise) the conservatism that is inherent in in-tunnel NO₂ concentration limits.

Strengths of the method

• I endorse a method which seeks to provide not just direct observational evidence, but also inform a modelling approach. The modelling will allow estimates for vehicles or settings beyond those observed to be estimated, allows for a fuller exploration of exposure outcomes and will be informative for tunnel exposure management and exposure assessment in general.

Pacific Environment: Noted.

Possible weaknesses of the method and suggested remedies

- Method
 - If I have understood the method correctly it allows each vehicle-ventilation combination to be sampled only once or twice. Given the high degree of variability in air quality in the tunnels (and speed in some cases) the risk of any single run being atypical, and the data being potentially misleading, is high.

Pacific Environment: Please refer to the earlier response.

• I am not convinced that tunnel drive-throughs for all 15 vehicles is necessary. If two vehicles have a similar AER I believe there is little to be gained in testing them both.

Pacific Environment: We currently have 9 vehicles in the matrix. We can't know beforehand whether the vehicles will have similar AERs, but we can consider adapting the NO₂ measurement part of the campaign if this occurs.

 A suggested solution is to reduce the number of vehicles used in the drive-throughs thus increasing the number of transects per vehicle-ventilation combination. This provides repeatability of results whilst also indicating the range of variability. I suggest that the vehicles driven through the tunnels are a sub-set of those tested for AER, based on the AER results. The sub-set could be selected to include vehicles with high, medium and low "baseline" AERs (baseline here meaning without intervention, i.e. open vents, high fan speed).

- This combination is intended to straddle the range of likely AERs in the fleet, but also indicate the degree of improvement achievable (a key project objective). Alternative vehicles and settings can be modelled.
- **Pacific Environment:** Please refer to the earlier response. We will retain this suggestion as an option.
 - Another way of addressing repeatability is to equip each car with a forward-facing video camera, perhaps set up to capture images every second. This will help to identify gross emitting vehicles which may produce atypically high external concentrations at low cost/effort.

Pacific Environment: We agree, and we had actually been discussing this internally. We will be fitting each vehicle with a video camera. The variance will be averaged out by multiple repeats, but the video information could be useful to explain unusually high spikes in NO₂. Additionally, this information might be used to correct potential bias if experiment times were to occur during periods when, for example, trucks comprise higher proportion of fleet. It is worth adding that the vehicle in front of the test vehicle should have a proportionally lower impact on the measurements with distance into a tunnel.

 The I/O ratio is dependent upon the internal and external concentrations as the vehicle enters the tunnel. Analysis will be simplified considerably if they are approximately equal, or at least that the internal concentration is stable. This is most simply achieved by flushing the vehicle cabin of pollutants after each tunnel has been exited. This is most efficiently achieved by opening windows. However, it will also be highly informative to keep ventilation settings constant during the entire multi-tunnel transect on a few runs. I recommend this is included if the matrix allows.

Pacific Environment: This should be straightforward to implement. We propose an initial (one-day) test period in which different effects can be investigated prior to the campaign.

• I do not understand why it would be proposed to measure AERs on recirculation mode only. How does this permit validation of the model of AERs for "open-vent" modes?

Pacific Environment: As noted earlier, this just seems to be a misinterpretation. We will be investigating AERs under re-circulation and 'outside air' conditions.

• Adding a deposition term will be easier if a non-depositing species (CO, CO2?) is also measured and observed.

Pacific Environment: We appreciate the thoroughness but as this is not a full-scale research project and we are under significant time constraints a detailed investigation on the rate of NO₂ deposition will not be possible. We will therefore rely on cabin surface volume and the deposition velocity of NO₂ from the literature. Deposition is unlikely to be a major factor affecting NO₂ levels under the conditions we will test (as opposed to residential indoor environments where it can be important). Nonetheless, we will assess the sensitivity of our results to estimated deposition rates.

<u>Analysis</u>

Analysis consists of two major activities: 1) generating statistics describing the observed data, 2) results of the modelling activities. The former is relatively simple, whereas the latter is more complex. I recommend that the basic statistics from the observations can be completed and released in advance of the modelling.

Pacific Environment: Noted.

o The statistics to be generated are not discussed. It should be noted that even for the same vehicle with the same ventilation setting, I/O ratio is likely to vary due to random encounters with other vehicles, variation in baseline concentrations (i.e. brought into the tunnel, traffic speed and tunnel length. The latter point is because there may not be sufficient time for an equilibrium to be achieved. This is especially so in the M5 East where the ventilation system means that a gradually rising or even concentration profile is **not** expected. The project team need to appreciate that the work of Hudda et al linking I/O ratio (or concentrations) to AER is based on much longer non-tunnel journeys during which concentrations remain much closer to equilibrium than is the case in tunnels (which represent a large perturbation away from equilibrium).

Pacific Environment: In our experience it is not unusual for equilibrium to be reached under tunnel conditions (even in the M5 East) and for a variety of recirculated and fresh air settings. This is underscored by the fact that when Hudda's open road, relatively long duration ultrafine I/O data were combined with Knibbs' data collected in the M5 East, the two data sets were statistically indistinguishable. The Hudda et al. model is for ultrafine particles, and the simple model we propose to relate AER and NO₂ is a basic mass-balance model that is aimed at addressing the objective of using a simple approach to relate AER, on-road and in-cabin levels.

It is also worth repeating that each trip will include multiple tunnels, and NO₂ measurements will be made using fast-response instruments that will generate a large amount of data under a wide range of external concentrations and real-world exposure conditions.

 Consequently, multiple repeats of the same vehicle-ventilation combination is recommended to indicate this variability. Thus, I recommend as a minimum that observational data is presented as box plots of average internal concentrations, average external concentrations and I/O ratios for each individual tunnel for each nominal AER represented.

Pacific Environment: Noted.

Further points and queries

• Has the accuracy of the GPS been assessed along the route chosen, especially around the Eastern Distributor which is surrounded by buildings?

Pacific Environment: We are currently in the process of field testing two GPS alternative systems (use of mobile phone with GPS tracking software and a field GPS logger). The mobile phone data has proven to be a reliable and accurate source of GPS data. The OBD output will be used to provide vehicle speed and location (via speed) in the absence of a GPS signal.

• The design makes no mention of the use of tunnel systems data. I would suggest that it would be useful to compare external data captured with data from the LCT in particular. However, I recognise that this might be considered part of a separate project (e.g. implementation of new NO2 guideline).

Pacific Environment: This is actually an omission. It was included in the original proposal but has been left out of the methodology report unintentionally. We will put it back in. In addition, a request has been sent to RMS for the tunnel characteristics and confirmation of the willingness of the tunnel operators to provide data during the measurement campaign.

• The data captured in this project will have substantial value for additional air quality research. For example, NO2 levels on major roads (as opposed to alongside) are largely unknown. I suggest that options to facilitate further research and data-mining are considered by RMS.

Pacific Environment: All measured data are the property of RMS, so options for this can be explored.

• It may be useful to know that I/O ratios greater than one might be observed. This could occur when a higher external concentration arises in an earlier stage of a tunnel transect, e.g. due to a gross emitter or ahead of an air extraction point. External concentrations may subsequently fall rapidly leaving a higher concentration trapped inside the vehicle pushing I/O above 1. This has regularly been observed by NIWA in non-tunnel environments.

Pacific Environment: Noted.

Appendix C

PHOTO LOG

HOLDEN ASTRA WAGON (2008)

Figure C-1: Holden Astra set up with Instrumentation running (Bottom Half)

Figure C-2: Holden Astra set up with instrumentation running (Top Half)

Figure C-3: Holden Astra complete installation of equipment

BMW X3 SUV (2014)

FORD FIESTA (2002)

Figure C-6: Ford Fiesta Setup

FIAT PUNTO (2007)

Figure C-9: Fiat Complete Setup

HYUNDAI 130

TOYOTA COROLLA (2008)

AUDI A3 (2002)

SUBARU OUTBACK (2007)

Figure C-21: Subaru Outback installed equipment

Appendix D SUMMARY TABLES

NITROGEN DIOXIDE

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
	Car 1- Holden Astra Wag	gon (2008)	
	EDMT		
	North Bound		
MD4			
R-Off AC-Off Fn-50%	73	57	0.78
25/08/2015 10:25	91	70	0.77
25/08/2015 19:45	55	43	0.79
MD5			
R-Off AC-Off Fn-0%	59	34	0.58
25/08/2015 15:45	42	32	0.77
25/08/2015 19:06	86	38	0.44
MD6			
R_Off AC-Off Fn-100%	136	129	0.95
25/08/2015 17:30	45	45	1.00
26/08/2015 9:29	143	135	0.94
MD2			
R-On AC-Off Fn-50%	91	27	0.30
25/08/2015 12:15	97	15	0.15
26/08/2015 11:45	86	36	0.42
	South Bound		
MD4			
R-Off AC-Off Fn-50%	143	110	0.77
25/08/2015 16:41	51	101	1.99
25/08/2015 19:34	44	50	1.12
26/08/2015 8:15	213	138	0.65
MD5			
R-Off AC-Off Fn-0%	175	11	0.06
25/08/2015 9:22	175	11	0.06
MD6			
R_Off AC-Off Fn-100%	143	108	0.75
25/08/2015 11:34	143	108	0.75
MD2			
R-On AC-Off Fn-50%	85	12	0.15
25/08/2015 18:19	85	12	0.15
	Lane Cove Tunn	el	
	East Bound		
MD4			
R-Off AC-Off Fn-50%	145	91	0.63

Pacific Environment			rironment
Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO ₂ concentration (ppb)	Average I/O ratio (paired)
25/08/2015 16:25	186	101	0.54
25/08/2015 19:23	108	82	0.76
MD5			
R-Off AC-Off Fn-0%	221	34	0.15
25/08/2015 8:45	211	26	0.12
26/08/2015 7:56	233	44	0.19
MD6			
R_Off AC-Off Fn-100%	319	247	0.78
25/08/2015 11:23	319	247	0.78
MD2			
R-On AC-Off Fn-50%	168	14	0.09
25/08/2015 14:51	177	6	0.04
25/08/2015 18:07	153	16	0.10
26/08/2015 10:43	176	19	0.11
	West Bound		
MD5			1
R-Off AC-Off Fn-0%	82	32	0.39
25/08/2015 16:02	95	39	0.41
25/08/2015 19:16	54	32	0.58
26/08/2015 7:41	97	26	0.26
MD6			1
R_Off AC-Off Fn-100%	97	88	0.90
25/08/2015 17:44	107	90	0.85
26/08/2015 10:03	84	85	1.01
MD2			

MD6			
R_Off AC-Off Fn-100%	97	88	0.90
25/08/2015 17:44	107	90	0.85
26/08/2015 10:03	84	85	1.01
MD2			
R-On AC-Off Fn-50%	97	20	0.21
25/08/2015 12:25	108	14	0.13
26/08/2015 11:54	84	27	0.32
	M5 Tunnel		
	East Bound		
MD4			
R-Off AC-Off Fn-50%	405	324	0.80
25/08/2015 9:59	378	297	0.79
25/08/2015 11:56	435	355	0.82
MD5			
R-Off AC-Off Fn-0%	285	68	0.24
25/08/2015 15:33	318	82	0.26
25/08/2015 18:45	254	55	0.22
MD6			
R Off LAC-Off L En-100%	208	182	0.88

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)	
25/08/2015 17:17	279	246	0.88	
26/08/2015 8:53	62	53	0.85	
MD2			_	
R-On AC-Off Fn-50%	319	43	0.13	
26/08/2015 11:29	319	43	0.13	
	West Bound			
MD4				
R-Off AC-Off Fn-50%	323	231	0.72	
25/08/2015 17:02	289	210	0.73	
26/08/2015 8:30	364	256	0.70	
MD5			_	
R-Off AC-Off Fn-0%	314	28	0.09	
25/08/2015 9:36	314	28	0.09	
MD6			_	
R_Off AC-Off Fn-100%	377	315	0.84	
25/08/2015 11:46	377	315	0.84	
MD2			_	
R-On AC-Off Fn-50%	284	16	0.06	
25/08/2015 15:19	339	12	0.04	
25/08/2015 18:32	126	11	0.09	
26/08/2015 11:08	409	32	0.08	
SHT				
	North Bound			
MD4			I	
R-Off AC-Off Fn-50%	82	69	0.85	
25/08/2015 10:28	117	89	0.76	
25/08/2015 19:48	57	55	0.97	
MD5		Γ	T	
R-Off AC-Off Fn-0%	79	39	0.49	
25/08/2015 19:08	79	39	0.49	
MD6		Γ	T	
R_Off AC-Off Fn-100%	109	110	1.01	
25/08/2015 17:34	117	112	0.96	
26/08/2015 9:57	79	102	1.29	
MD2				
R-On AC-Off Fn-50%	146	21	0.14	
25/08/2015 12:18	141	15	0.10	
26/08/2015 11:48	154	30	0.20	
	South Bound			
MD4				

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-Off AC-Off Fn-50%	51	41	0.80
25/08/2015 16:33	56	47	0.84
25/08/2015 19:31	30	35	1.14
26/08/2015 8:10	67	39	0.59
MD5		Γ	1
R-Off AC-Off Fn-0%	16	2	0.10
25/08/2015 9:15	16	2	0.10
MD6		Γ	1
R_Off AC-Off Fn-100%	54	44	0.82
25/08/2015 11:31	54	44	0.82
MD2		Γ	1
R-On AC-Off Fn-50%	38	19	0.50
25/08/2015 14:58	71	11	0.15
25/08/2015 18:16	35	14	0.41
26/08/2015 10:50	21	27	1.30
	Car 2 - Ford Fies	ita	
	EDMT		
	North Bound		
MD4		[
R-Off AC-Off Fn-50%	149	123	0.83
26/08/2015 17:44	126	131	1.04
26/08/2015 19:32	83	33	0.39
27/08/2015 9:09	96	92	0.95
27/08/2015 17:51	189	151	0.79
MD2		E	T
R-On AC-Off Fn-50%	116	48	0.41
27/08/2015 10:57	91	56	0.62
27/08/2015 15:14	141	40	0.28
	South Bound		
MD5			
R-Off AC-Off Fn-0%	200	53	0.27
26/08/2015 16:46	105	46	0.43
27/08/2015 7:44	297	45	0.15
27/08/2015 14:27	224	83	0.37
MD6			
R_Off AC-Off Fn-100%	224	195	0.87
26/08/2015 18:50	141	131	0.93
27/08/2015 10:03	344	291	0.85
27/08/2015 16:12	169	150	0.89

Setting / Time of entry into tunnel	Average external NO ₂ concentration (ppb)	Average internal NO ₂ concentration (ppb)	Average I/O ratio (paired)
	East Bound		
MD5			
R-Off AC-Off Fn-0%	292	90	0.31
26/08/2015 16:23	263	118	0.45
27/08/2015 7:18	635	111	0.18
27/08/2015 11:35	198	55	0.28
27/08/2015 14:15	219	70	0.32
MD6			
R_Off AC-Off Fn-100%	271	204	0.75
26/08/2015 18:33	237	198	0.84
27/08/2015 9:52	316	218	0.69
27/08/2015 15:50	264	197	0.75
	West Bound		
MD4			
R-Off AC-Off Fn-50%	100	79	0.79
26/08/2015 18:02	110	105	0.96
26/08/2015 19:41	62	32	0.52
27/08/2015 9:22	109	85	0.78
27/08/2015 18:09	118	93	0.78
MD5			
R-Off AC-Off Fn-0%	147	78	0.53
26/08/2015 16:09	147	78	0.53
MD2			
R-On AC-Off Fn-50%	91	47	0.51
27/08/2015 11:06	81	53	0.66
27/08/2015 15:26	100	40	0.40
	M5T		
	East Bound		
MD4			
R-Off AC-Off Fn-50%	301	214	0.71
26/08/2015 17:28	260	226	0.87
26/08/2015 19:18	191	49	0.26
27/08/2015 8:39	435	315	0.72
27/08/2015 17:04	278	223	0.80
MD2			
R-On AC-Off Fn-50%	426	65	0.15
27/08/2015 10:42	477	76	0.16
27/08/2015 15:00	364	52	0.14
	West Bound		
MD5			

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-Off AC-Off Fn-0%	360	63	0.17
26/08/2015 17:09	221	56	0.25
27/08/2015 7:59	350	58	0.17
27/08/2015 14:43	532	77	0.14
MD6			
R_Off AC-Off Fn-100%	246	216	0.88
26/08/2015 19:04	127	135	1.06
27/08/2015 10:19	332	282	0.85
27/08/2015 16:45	250	214	0.86
	SHT		
	North Bound		
MD4			T
R-Off AC-Off Fn-50%	144	125	0.86
26/08/2015 17:50	148	145	0.98
26/08/2015 19:35	92	33	0.37
27/08/2015 9:14	167	136	0.81
27/08/2015 18:00	144	134	0.93
MD2			
R-On AC-Off Fn-50%	172	49	0.28
27/08/2015 10:59	130	61	0.47
27/08/2015 15:18	203	41	0.20
	South Bound		
MD5			1
R-Off AC-Off Fn-0%	127	48	0.38
26/08/2015 16:33	156	52	0.33
27/08/2015 7:37	98	33	0.34
27/08/2015 14:24	68	63	0.93
MD6		E	F
R_Off AC-Off Fn-100%	118	116	0.98
26/08/2015 18:43	95	106	1.12
27/08/2015 10:00	74	70	0.94
27/08/2015 16:00	141	133	0.94
	Car 3 - BMW X	3	
	EDMT		
	North Bound		
R-Ott AC-Off Fn-50%	112	55	0.49
1/09/2015 9:36	133	70	0.53
1/09/2015 17:33	92	40	0.44
MUZ			

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-On AC-Off Fn-50%	121	21	0.17
1/09/2015 11:26	153	26	0.17
1/09/2015 19:21	87	16	0.18
	South Bound		
MD5			
R-Off AC-Off Fn-0%	146	11	0.08
1/09/2015 16:17	146	11	0.08
MD6			
R_Off AC-Off Fn-100%	121	56	0.46
1/09/2015 10:32	147	46	0.31
1/09/2015 18:28	104	63	0.60
	LCT		
	East Bound		
MD5			
R-Off AC-Off Fn-0%	289	15	0.05
1/09/2015 7:59	274	1	0.01
1/09/2015 16:01	306	30	0.10
MD6			
R_Off AC-Off Fn-100%	270	98	0.36
1/09/2015 10:21	279	66	0.24
1/09/2015 18:16	261	134	0.51
	West Bound		
MD4			
R-Off AC-Off Fn-50%	159	42	0.27
1/09/2015 9:46	149	56	0.38
1/09/2015 17:46	168	30	0.18
	20	10	
R-On AC-Off Fn-50%	98	18	0.18
1/09/2015 11:35	120	22	0.18
1/09/2015 19:31	/5	14	0.18
	MSI East Round		
MD4			
$P \cap ff \mid A \cap \cap ff \mid Ep 50\%$	125	204	0.48
1/09/2015 9.16	423	200	0.48
1/09/2013 7.18	234	<u> </u>	0.00
MD2	207	יד	0.20
$R-On \mid AC-Off \mid Fn-50\%$	420	28	0.07
1/09/2015 11.11	482	19	0.04
1/09/2015 19:03	337	40	0.12

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
	West Bound		
MD5			
R-Off AC-Off Fn-0%	307	7	0.02
1/09/2015 8:27	281	5	0.02
1/09/2015 16:49	323	8	0.02
MD6		Γ	Γ
R_Off AC-Off Fn-100%	300	172	0.57
1/09/2015 10:45	445	139	0.31
1/09/2015 18:47	232	188	0.81
	SHT		
	North Bound		
MD4		[[
R-Off AC-Off Fn-50%	138	48	0.35
1/09/2015 9:38	147	79	0.54
1/09/2015 17:37	131	27	0.20
MD2		[[
R-On AC-Off Fn-50%	202	20	0.10
1/09/2015 11:29	205	24	0.12
1/09/2015 19:24	199	15	0.07
	South Bound		
MD5			
R-Off AC-Off Fn-0%	98	20	0.20
1/09/2015 16:09	98	20	0.20
	70	0.5	0.50
R_OTT AC-OTT Fn-100%	70	35	0.50
1/09/2015 10:29	82	31	0.37
1/09/2015 18:24	58 Carr (, , Huur dai	39	0.67
		150	
	North Bound		
MD5	Norm Boond		
R-Off AC-Off En-0%	112	44	0.39
2/09/2015 13:26	105	46	0.44
3/09/2015 12:42	119	43	0.36
4/09/2015 12:12	111	43	0.39
MD6			0.07
R Off AC-Off Fn-100%	108	98	0.90
2/09/2015 15:27	100	86	0.86
3/09/2015 14:35	116	109	0.94
MD2			

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-On AC-Off Fn-50%	133	13	0.10
4/09/2015 16:03	133	13	0.10
	South Bound		
MD4			
R-Off AC-Off Fn-50%	172	63	0.37
2/09/2015 14:23	191	114	0.60
3/09/2015 13:32	176	110	0.63
4/09/2015 11:28	160	9	0.06
MD6			
R_Off AC-Off Fn-100%	194	148	0.76
4/09/2015 13:17	194	148	0.76
MD2			
R-On AC-Off Fn-50%	221	10	0.05
2/09/2015 12:46	239	9	0.04
3/09/2015 11:53	203	12	0.06
	LCT		
	East Bound		
MD4			
R-Off AC-Off Fn-50%	242	97	0.40
2/09/2015 14:12	225	133	0.59
3/09/2015 13:21	235	147	0.63
4/09/2015 11:17	269	6	0.02
MD6			
R_Off AC-Off Fn-100%	278	213	0.77
4/09/2015 13:06	278	213	0.77
MD2			r
R-On AC-Off Fn-50%	259	16	0.06
2/09/2015 12:35	271	18	0.07
3/09/2015 11:42	247	15	0.06
	West Bound		
MD5			
R-Off AC-Off Fn-0%	125	41	0.33
2/09/2015 13:36	146	46	0.32
3/09/2015 12:53	113	36	0.31
4/09/2015 12:29	116	40	0.35
MD6			
R_Off AC-Off Fn-100%	138	109	0.79
2/09/2015 15:38	139	112	0.81
3/09/2015 14:44	137	107	0.78
MD2			

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-On AC-Off Fn-50%	120	10	0.09
2/09/2015 12:27	110	11	0.10
3/09/2015 10:33	114	2	0.02
4/09/2015 16:17	140	18	0.13
	M5T		
	East Bound		
MD5			1
R-Off AC-Off Fn-0%	526	42	0.08
2/09/2015 13:12	495	60	0.12
3/09/2015 12:27	546	35	0.06
4/09/2015 12:05	537	32	0.06
MD6			
R_Off AC-Off Fn-100%	444	387	0.87
2/09/2015 14:56	410	353	0.86
3/09/2015 14:00	479	421	0.88
MD2			
R-On AC-Off Fn-50%	395	32	0.08
4/09/2015 15:18	395	32	0.08
	West Bound		
MD4			
R-Off AC-Off Fn-50%	356	275	0.77
2/09/2015 14:38	384	286	0.74
3/09/2015 13:45	306	248	0.81
4/09/2015 11:42	382	294	0.77
MD6			-
R_Off AC-Off Fn-100%	420	370	0.88
4/09/2015 13:32	420	370	0.88
MD2			
R-On AC-Off Fn-50%	415	7	0.02
2/09/2015 12:58	449	4	0.01
3/09/2015 12:05	378	10	0.03
	SHT		
	North Bound		
MD5			1
R-Off AC-Off Fn-0%	141	51	0.37
2/09/2015 13:29	152	56	0.37
3/09/2015 12:45	149	49	0.33
4/09/2015 12:22	124	51	0.41
MD6			
R_Off AC-Off Fn-100%	186	154	0.82

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
2/09/2015 15:30	180	154	0.85
3/09/2015 14:37	195	153	0.79
MD2			T
R-On AC-Off Fn-50%	206	12	0.06
4/09/2015 16:09	206	12	0.06
	South Bound		
MD4			1
R-Off AC-Off Fn-50%	66	38	0.58
2/09/2015 14:20	82	54	0.65
3/09/2015 13:28	59	46	0.78
4/09/2015 11:25	53	12	0.23
MD6			1
R_Off AC-Off Fn-100%	75	58	0.76
4/09/2015 13:14	75	58	0.76
MD2			1
R-On AC-Off Fn-50%	54	12	0.23
2/09/2015 12:43	56	11	0.20
3/09/2015 11:49	53	14	0.26
	Car 5 - Audi A	3	
	EDMT		
	North Bound		
MD1			1
R-On AC-On Fn-50%	125	63	0.50
9/09/2015 11:41	127	57	0.45
8/09/2015 9:21	122	66	0.54
8/09/2015 12:12	126	64	0.51
MD4			1
R-Off AC-Off Fn-50%	116	42	0.37
8/09/2015 18:14	94	34	0.37
9/09/2015 8:59	135	49	0.36
MD2			1
R-On AC-Off Fn-50%	167	45	0.27
8/09/2015 16:20	167	45	0.27
MD3			T
R-OnOff AC-Off Fn-50%	112	51	0.45
9/09/2015 10:37	115	42	0.37
8/09/2015 10:47	109	61	0.56
South Bound			
MD1			
R-On AC-On Fn-50%	169	38	0.23

	Limited		rironment
Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
8/09/2015 14:49	166	43	0.26
9/09/2015 7:48	176	29	0.16
MD4			1
R-Off AC-Off Fn-50%	195	39	0.20
8/09/2015 7:58	145	26	0.18
8/09/2015 11:34	290	64	0.22
MD2		Γ	1
R-On AC-Off Fn-50%	173	55	0.32
9/09/2015 9:50	173	50	0.29
8/09/2015 10:04	173	58	0.34
MD3			
R-OnOff AC-Off Fn-50%	193	46	0.24
8/09/2015 16:54	196	45	0.23
9/09/2015 11:03	187	48	0.26
	LCT		
	East Bound		
MD1			1
R-On AC-On Fn-50%	328	54	0.17
8/09/2015 14:38	243	54	0.22
9/09/2015 7:10	435	52	0.12
9/09/2015 11:56	188	60	0.32
MD4			1
R-Off AC-Off Fn-50%	341	58	0.17
8/09/2015 7:30	341	58	0.17
MD2		I	1
R-On AC-Off Fn-50%	315	70	0.22
9/09/2015 9:32	273	73	0.27
8/09/2015 9:53	382	66	0.17
MD3			1
R-OnOff AC-Off Fn-50%	249	49	0.20
8/09/2015 16:41	230	45	0.19
9/09/2015 10:53	296	59	0.20
8/09/2015 12:36	218	42	0.19
	West Bound		
MD1		I	
R-On AC-On Fn-50%	135	48	0.36
9/09/2015 11:50	170	55	0.33
8/09/2015 9:32	113	38	0.34

MD4

8/09/2015 12:22

123

52

0.42

.

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
R-Off AC-Off Fn-50%	119	37	0.31
8/09/2015 18:27	122	40	0.33
9/09/2015 9:09	116	34	0.30
MD2			
R-On AC-Off Fn-50%	127	38	0.30
8/09/2015 16:32	127	38	0.30
MD3		Γ	1
R-OnOff AC-Off Fn-50%	129	44	0.34
9/09/2015 10:46	155	39	0.25
8/09/2015 10:56	102	49	0.48
	M5T		
	East Bound		
MD1		[
R-On AC-On Fn-50%	510	194	0.38
9/09/2015 11:28	606	192	0.32
8/09/2015 8:24	406	190	0.47
8/09/2015 11:58	546	202	0.37
MD4		E	1
R-Off AC-Off Fn-50%	275	80	0.29
8/09/2015 17:41	245	71	0.29
9/09/2015 8:19	291	85	0.29
MD2		E	1
R-On AC-Off Fn-50%	366	134	0.37
8/09/2015 15:37	366	134	0.37
MD3		E	1
R-OnOff AC-Off Fn-50%	408	134	0.33
9/09/2015 10:23	360	99	0.28
8/09/2015 10:33	450	165	0.37
	West Bound		
MD1			
R-On AC-On Fn-50%	299	107	0.36
8/09/2015 15:07	328	131	0.40
9/09/2015 8:00	217	39	0.18
	222	22	
K-UTT AC-UTT Fn-50%	320	99	0.31
8/09/2015 8:11	290	62	0.22
8/09/2015 11:45	355		0.40
	100	00	0.05
κ-UTI AU-UTI FN-50%	403	79	0.25
7/07/2013 1003 1	4.14	/0	I U.10

		I	
Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
8/09/2015 10:22	368	122	0.33
MD3			•
R-OnOff AC-Off Fn-50%	287	86	0.30
8/09/2015 17:20	287	86	0.30
	SHT		
	North Bound		
MD1			1
R-On AC-On Fn-50%	184	69	0.38
9/09/2015 11:44	187	67	0.36
8/09/2015 9:24	174	64	0.37
8/09/2015 12:15	197	79	0.40
MD4			I
R-Off AC-Off Fn-50%	175	55	0.31
8/09/2015 18:17	171	59	0.35
9/09/2015 9:02	182	48	0.26
MD2		I	1
R-On AC-Off Fn-50%	172	67	0.39
8/09/2015 16:24	172	67	0.39
MD3			1
R-OnOff AC-Off Fn-50%	104	55	0.52
9/09/2015 10:40	97	46	0.48
8/09/2015 10:50	114	66	0.58
	South Bound		
MD1		Γ	T
R-On AC-On Fn-50%	53	23	0.43
8/09/2015 14:46	52	25	0.48
9/09/2015 7:45	54	19	0.36
MD4			I
R-Off AC-Off Fn-50%	46	33	0.71
8/09/2015 11:31	46	33	0.71
MD2		I	1
R-On AC-Off Fn-50%	63	40	0.64
9/09/2015 9:46	69	37	0.53
8/09/2015 10:01	56	43	0.78
MD3			1
R-OnOff AC-Off Fn-50%	60	35	0.59
8/09/2015 16:49	74	34	0.46
9/09/2015 11:00	40	37	0.92
	Car 6 - Subaru	J	
	EDMT		

Pacific Fr	vironment
I GOILO EI	
Limited	

Setting / Time of entry into tunnel	Average external NO ₂ concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
	North Bound		
MD1			
R-On AC-On Fn-50%	106	27	0.26
10/09/2015 13:22	121	21	0.18
11/09/2015 13:22	96	31	0.32
MD4			
R-Off AC-Off Fn-50%	113	92	0.82
10/09/2015 15:14	118	87	0.73
11/09/2015 15:10	108	98	0.91
	South Bound		
MD2			Γ
R-On AC-Off Fn-50%	281	52	0.19
11/09/2015 14:01	281	52	0.19
MD3			
R-OnOff AC-Off Fn-50%	141	37	0.26
10/09/2015 12:29	116	26	0.22
10/09/2015 13:49	168	49	0.29
	LCT		
	East Bound		
MD1			
R-On AC-On Fn-50%	268	136	0.51
11/09/2015 15:29	268	136	0.51
MD2			[
R-On AC-Off Fn-50%	317	48	0.15
11/09/2015 13:49	317	48	0.15
MD3			[
R-OnOff AC-Off Fn-50%	243	31	0.13
10/09/2015 13:39	265	42	0.16
10/09/2015 12:18	221	19	0.09
	West Bound		
MD1			
R-On AC-On Fn-50%	133	28	0.21
10/09/2015 13:32	142	26	0.18
11/09/2015 13:31	124	30	0.24
MD4			
R-Off AC-Off Fn-50%	166	117	0.71
10/09/2015 15:24	180	133	0.74
11/09/2015 15:21	152	102	0.67
M5T	405	83	0.21
	East Bound		

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
MD1			1
R-On AC-On Fn-50%	484	44	0.09
10/09/2015 12:55	470	53	0.11
11/09/2015 13:08	496	36	0.07
MD4			1
R-Off AC-Off Fn-50%	421	293	0.70
10/09/2015 14:28	456	331	0.73
11/09/2015 14:34	384	253	0.66
	West Bound		
MD2			Т
R-On AC-Off Fn-50%	390	42	0.11
11/09/2015 14:20	390	42	0.11
MD3			Τ
R-OnOff AC-Off Fn-50%	372	33	0.09
10/09/2015 12:41	399	25	0.06
10/09/2015 14:05	344	42	0.12
	SHT		
	North Bound		
MD1			
R-On AC-On Fn-50%	186	29	0.16
10/09/2015 13:25	212	27	0.13
11/09/2015 13:25	161	32	0.20
MD4			
R-Off AC-Off Fn-50%	166	126	0.76
10/09/2015 15:17	159	120	0.76
11/09/2015 15:13	176	133	0.76
	South Bound		
MD2			
R-On AC-Off Fn-50%	79	40	0.51
11/09/2015 13:57	79	40	0.51
MD3			1
R-OnOff AC-Off Fn-50%	85	29	0.34
10/09/2015 13:46	55	34	0.62
10/09/2015 12:26	105	25	0.24
	Car 7 - Toyota Cor	rolla	
	EDMT		
	North Bound		
MD4			
R-Off AC-Off Fn-50%	107	85	0.79
15/09/2015 16:45	103	97	0.94

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
16/09/2015 11:08	115	64	0.56
MD2			
R-On AC-Off Fn-50%	135	25	0.18
15/09/2015 14:59	122	18	0.15
16/09/2015 9:24	146	29	0.20
MD3			T
R-OnOff AC-Off Fn-50%	81	43	0.53
15/09/2015 19:03	81	43	0.53
	South Bound		
MD1			1
R-On AC-On Fn-50%	159	13	0.08
15/09/2015 14:09	159	17	0.11
15/09/2015 17:44	171	11	0.07
16/09/2015 7:50	140	15	0.11
MD3			
R-OnOff AC-Off Fn-50%	223	60	0.27
15/09/2015 15:41	210	64	0.30
16/09/2015 10:15	259	48	0.18
	LCT		
	East Bound		
MD1			1
R-On AC-On Fn-50%	233	16	0.07
15/09/2015 13:58	212	13	0.06
15/09/2015 17:23	226	16	0.07
16/09/2015 7:25	253	19	0.07
MD4			
R-Off AC-Off Fn-50%	417	197	0.47
16/09/2015 12:15	417	197	0.47
MD3			
R-OnOff AC-Off Fn-50%	343	44	0.13
15/09/2015 15:28	258	53	0.21
16/09/2015 10:04	411	36	0.09
	West Bound		
MD1			
R-On AC-On Fn-50%	78	12	0.16
16/09/2015 7:15	78	12	0.16
MD4			
R-Off AC-Off Fn-50%	160	103	0.65
15/09/2015 16:59	159	117	0.74
16/09/2015 12:05	162	89	0.55

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
MD2			
R-On AC-Off Fn-50%	143	20	0.14
15/09/2015 15:08	157	20	0.12
16/09/2015 9:34	130	19	0.15
	M5T		
	East Bound		
MD4			1
R-Off AC-Off Fn-50%	398	236	0.59
15/09/2015 16:32	368	283	0.77
16/09/2015 10:54	420	201	0.48
MD2			1
R-On AC-Off Fn-50%	425	28	0.06
15/09/2015 14:45	438	36	0.08
16/09/2015 8:37	415	21	0.05
MD3			1
R-OnOff AC-Off Fn-50%	338	38	0.11
15/09/2015 18:38	338	38	0.11
	West Bound		
MD1			
R-On AC-On Fn-50%	384	20	0.05
15/09/2015 14:24	546	24	0.04
15/09/2015 18:23	229	14	0.06
16/09/2015 8:06	377	22	0.06
MD3			
R-OnOff AC-Off Fn-50%	414	49	0.12
15/09/2015 16:16	460	47	0.10
16/09/2015 10:29	308	54	0.18
	SHT		
	North Bound		
MD4			
R-Off AC-Off Fn-50%	204	140	0.69
15/09/2015 16:51	219	182	0.83
16/09/2015 11:11	181	79	0.44
MD2			
R-On AC-Off Fn-50%	168	21	0.13
15/09/2015 15:01	168	19	0.12
16/09/2015 9:27	169	24	0.14
MD3			
R-OnOff AC-Off Fn-50%	87	41	0.47
15/09/2015 19:05	87	41	0.47

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)	
	South Bound			
MD1				
R-On AC-On Fn-50%	91	14	0.16	
15/09/2015 14:05	51	22	0.43	
15/09/2015 17:32	112	13	0.11	
16/09/2015 7:45	67	13	0.19	
MD3				
R-OnOff AC-Off Fn-50%	76	46	0.60	
15/09/2015 15:35	69	46	0.67	
16/09/2015 10:12	85	45	0.53	
	Car 8 - Fiat Pun	ło		
	EDMT			
	North Bound			
	1.40	10		
R-On AC-On Fn-50%	143	19	0.13	
1//09/2015 18:49	143	19	0.13	
	100	0/	0.80	
14/09/2015 18:20	100	03	0.87	
17/09/2015 10:5/	107	110	0.83	
17/09/2015 10.56	03	82	0.73	
1//07/2013 17.30 73 82 0.88				
R_{-} $\cap A_{-}$ $\cap ff \mid Fn_{-}50\%$	124	24	0.20	
16/09/2015 16:27	104	25	0.24	
17/09/2015 8:43	137	19	0.14	
17/09/2015 14:53	126	29	0.23	
	South Bound		0120	
MD1				
R-On AC-On Fn-50%	163	27	0.16	
16/09/2015 15:02	157	28	0.18	
17/09/2015 7:07	219	26	0.12	
17/09/2015 13:46	127	37	0.29	
17/09/2015 18:34	121	21	0.17	
MD3				
R-OnOff AC-Off Fn-50%	148	46	0.31	
16/09/2015 17:11	177	52	0.29	
17/09/2015 9:30	129	41	0.32	
17/09/2015 15:28	131	44	0.33	
	LCT			
	East Bound			

Pacific Environment Limited		
l NO2	Average internal NO2	Average I/O
opb)	concentration (ppb)	ratio (paired)

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
MD1			I
R-On AC-On Fn-50%	268	34	0.13
16/09/2015 14:51	221	25	0.11
17/09/2015 6:50	387	31	0.08
17/09/2015 13:35	260	27	0.10
17/09/2015 17:54	203	45	0.22
MD3			
R-OnOff AC-Off Fn-50%	276	43	0.15
16/09/2015 16:48	295	40	0.13
17/09/2015 9:19	290	46	0.16
17/09/2015 15:12	243	42	0.17
	West Bound		
MD4			[
R-Off AC-Off Fn-50%	120	86	0.72
16/09/2015 18:30	92	78	0.85
17/09/2015 11:05	127	87	0.68
17/09/2015 17:47	142	94	0.67
MD2			ſ
R-On AC-Off Fn-50%	144	30	0.21
16/09/2015 16:38	189	33	0.17
17/09/2015 8:54	112	24	0.21
17/09/2015 15:04	124	33	0.26
	M5T		
	East Bound		
MD4			Γ
R-Off AC-Off Fn-50%	384	281	0.73
16/09/2015 18:05	281	212	0.75
17/09/2015 10:41	523	374	0.71
17/09/2015 16:35	330	245	0.74
MD2			
R-On AC-Off Fn-50%	374	33	0.09
16/09/2015 15:45	345	34	0.10
17/09/2015 8:10	379	25	0.07
17/09/2015 14:25	396	45	0.11
	West Bound		
MD1			
R-On AC-On Fn-50%	468	44	0.09
16/09/2015 15:27	499	42	0.08
17/09/2015 7:21	268	50	0.19
17/09/2015 14:04	495	44	0.09

Setting / Time of entry into tunnel	Average external NO2 concentration (ppb)	Average internal NO2 concentration (ppb)	Average I/O ratio (paired)
MD3			
R-OnOff AC-Off Fn-50%	293	38	0.13
16/09/2015 17:17	91	67	0.73
16/09/2015 17:46	215	33	0.16
17/09/2015 9:48	431	35	0.08
17/09/2015 16:19	300	42	0.14
	SHT		
	North Bound		
MD1		Γ	T
R-On AC-On Fn-50%	153	35	0.23
17/09/2015 18:53	153	35	0.23
MD4			T
R-Off AC-Off Fn-50%	146	114	0.78
16/09/2015 18:23	133	103	0.77
17/09/2015 10:59	158	120	0.76
17/09/2015 17:40	148	118	0.80
MD2		Γ	T
R-On AC-Off Fn-50%	195	27	0.14
16/09/2015 16:31	214	27	0.12
17/09/2015 8:47	158	21	0.13
17/09/2015 14:56	211	35	0.16
	South Bound		
MD1			T
R-On AC-On Fn-50%	88	25	0.29
16/09/2015 14:59	54	36	0.65
17/09/2015 7:01	56	35	0.63
17/09/2015 13:42	18	42	2.36
17/09/2015 18:20	108	19	0.18
MD3		Γ	1
R-OnOff AC-Off Fn-50%	112	30	0.27
16/09/2015 17:01	121	24	0.20
17/09/2015 9:27	49	35	0.72
17/09/2015 15:20	124	36	0.29

Average I/O ratio references:

Green = Values less than 0.2 Black = Values between 0.2 and 0.7 Red = Values greater than 0.7

Appendix E BOX PLOTS

IN-VEHICLE NO2 CONCETRATION

Comparison of In- Vehicle NO2 concentration for four major tunnels

Figure E-1: In-Vehicle NO₂ concentration 2008 Holden Astra Wagon – Prescribed Direction

Limited

Figure E-2: In-Vehicle NO₂ concentration 2014 Hyundai i30 – Prescribed Direction

RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Figure E-3: In-Vehicle NO₂ concentration 2001 Subaru Outback – Counter Direction

RC-On = Air Recirculation On, Air conditioning Off and Fan speed 50%RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Limited

RC-On = Air Recirculation On, Air conditioning Off and Fan speed 50%RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Figure E-4: In-Vehicle NO₂ concentration 2011 Toyota Corolla – Counter Direction

RC-On = Air Recirculation On, Air conditioning Ott and Fan speed 50%
RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Figure E-5: In-Vehicle NO₂ concentration 2002 Audi A3 – Counter Direction

Limited

RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Figure E-6: In-Vehicle NO₂ concentration 2014 BMW Prestige – Counter Direction

RC-Off = Air Recirculation Off, Air conditioning Off and Fan speed 50%

Figure E-7: In-Vehicle NO₂ concentration 2007 Fiat Punto – Counter Direction

Limited

-

RC-On = Air Recirculation On, Air conditioning Off, Fan speed 50%RC-Off = Air Recirculation Off, Air conditioning Off, Fan speed 50%

Figure E-8: In-Vehicle NO₂ concentration 2002 Ford Fiesta – Counter Direction